Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization
Variational Graph Autoencoder (VGAE) has recently gained traction for learning representations on graphs. Its inception has allowed models to achieve state-of-the-art performance for challenging tasks such as link prediction, rating prediction, and node clustering. However, a fundamental flaw exists...
Uloženo v:
| Vydáno v: | Entropy (Basel, Switzerland) Ročník 22; číslo 2; s. 197 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
MDPI
01.02.2020
MDPI AG |
| Témata: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!