Deep causality variational autoencoder network for identifying the potential biomarkers of brain disorders

Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering Vol. 32; p. 1
Main Authors: Alfakih, Amani, Xia, Zhengwang, Ali, Bahzar, Mamoon, Saqib, Lu, Jianfeng
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1534-4320, 1558-0210, 1558-0210
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs that characterize the causal relationship between brain regions based on time series data. To address this issue, we designed a novel model named deep causal variational autoencoder (CVAE) to estimate the causal relationship between brain regions. This network contains a causal layer that can estimate the causal relationship between different brain regions directly. Compared with previous approaches, our method relaxes many constraints on the structure of underlying causal graph. Our proposed method achieves excellent performance on both the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Autism Brain Imaging Data Exchange 1 (ABIDE1) databases. Moreover, the experimental results show that deep CVAE has promising applications in the field of brain disease identification.
AbstractList Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs that characterize the causal relationship between brain regions based on time series data. To address this issue, we designed a novel model named deep causal variational autoencoder (CVAE) to estimate the causal relationship between brain regions. This network contains a causal layer that can estimate the causal relationship between different brain regions directly. Compared with previous approaches, our method relaxes many constraints on the structure of underlying causal graph. Our proposed method achieves excellent performance on both the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Autism Brain Imaging Data Exchange 1 (ABIDE1) databases. Moreover, the experimental results show that deep CVAE has promising applications in the field of brain disease identification.
Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs that characterize the causal relationship between brain regions based on time series data. To address this issue, we designed a novel model named deep causal variational autoencoder (CVAE) to estimate the causal relationship between brain regions. This network contains a causal layer that can estimate the causal relationship between different brain regions directly. Compared with previous approaches, our method relaxes many constraints on the structure of underlying causal graph. Our proposed method achieves excellent performance on both the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Autism Brain Imaging Data Exchange 1 (ABIDE1) databases. Moreover, the experimental results show that deep CVAE has promising applications in the field of brain disease identification.Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection between brain regions (i.e., causality) has become the central topic in the domain of fMRI. The purpose of this study is to obtain causal graphs that characterize the causal relationship between brain regions based on time series data. To address this issue, we designed a novel model named deep causal variational autoencoder (CVAE) to estimate the causal relationship between brain regions. This network contains a causal layer that can estimate the causal relationship between different brain regions directly. Compared with previous approaches, our method relaxes many constraints on the structure of underlying causal graph. Our proposed method achieves excellent performance on both the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Autism Brain Imaging Data Exchange 1 (ABIDE1) databases. Moreover, the experimental results show that deep CVAE has promising applications in the field of brain disease identification.
Author Alfakih, Amani
Lu, Jianfeng
Xia, Zhengwang
Mamoon, Saqib
Ali, Bahzar
Author_xml – sequence: 1
  givenname: Amani
  orcidid: 0009-0005-0168-0567
  surname: Alfakih
  fullname: Alfakih, Amani
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Zhengwang
  orcidid: 0000-0002-6815-5856
  surname: Xia
  fullname: Xia, Zhengwang
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Bahzar
  surname: Ali
  fullname: Ali, Bahzar
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Saqib
  orcidid: 0000-0002-8392-5118
  surname: Mamoon
  fullname: Mamoon, Saqib
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Jianfeng
  orcidid: 0000-0002-9190-507X
  surname: Lu
  fullname: Lu, Jianfeng
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38113163$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEURkeoiD7gDyCELLFhk-D3Y4lKC5UqkCB7y-O5U5xOxsH2gPLv60lChbpgZcs63-ere86bkzGO0DSvCV4Sgs2H1dcf36-WFFO2ZIxzY8Sz5owIoReYEnwy3xlfcEbxaXOe8xpjoqRQL5pTpglhRLKzZv0JYIu8m7IbQtmh3y4FV0Ic3YDcVCKMPnaQ0AjlT0z3qI8JhQ7GEvpdGO9Q-QloG8v8UBNtiBuX7iFlFHvUJhdG1IUcU63IL5vnvRsyvDqeF83q-mp1-WVx--3zzeXH24XnkpaFNk573NZRjegZGKkN7Rh2nfCCYO-06ony4GjXMqc6jCXzVLaKSaNarNhFc3Oo7aJb220KdaKdjS7Y_UNMd9alEvwA1oCSnQNfmwSv-3Ccir5vDe455tyZ2vX-0LVN8dcEudhNyB6GwY0Qp2ypwZwIqRWv6Lsn6DpOqa5xpohQjGs-F749UlO7ge5xvL9CKkAPgE8x5wT9I0Kwna3bvXU7W7dH6zWkn4R8KHuLpSoY_h99c4gGAPjnLyYl1YY9AJmnuuQ
CODEN ITNSB3
CitedBy_id crossref_primary_10_1080_00949655_2025_2516793
crossref_primary_10_1109_TNSRE_2025_3562662
crossref_primary_10_34133_hds_0282
crossref_primary_10_1002_ima_70005
crossref_primary_10_1016_j_engappai_2025_111877
Cites_doi 10.3390/make1010019
10.1109/TMI.2019.2933160
10.1109/TPAMI.2015.2511754
10.1016/j.media.2019.101630
10.1609/aaai.v34i04.5921
10.1016/j.neuroimage.2013.07.019
10.1109/ICCV.2017.74
10.1007/s11517-022-02558-4
10.1023/A:1012487302797
10.1016/j.neuroimage.2016.07.058
10.1371/journal.pone.0015238
10.1109/JBHI.2018.2875456
10.1137/1.9781611977172.48
10.1038/npp.2009.115
10.1007/s00429-010-0283-8
10.1007/s11571-020-09630-5
10.26599/TST.2021.9010081
10.1109/JBHI.2019.2946676
10.1109/JBHI.2023.3265364
10.1016/j.neulet.2014.06.043
10.1016/j.jneumeth.2020.108884
10.1002/SERIES1345
10.31083/j.jin2102057
10.1002/hbm.23240
10.1093/cercor/bhs270
10.1016/j.jneumeth.2017.03.006
10.1038/s41598-021-87411-8
10.1038/s41598-021-93190-z
10.1198/jasa.2009.0126
10.1016/j.actbio.2021.06.024
10.1609/aaai.v37i7.26031
10.1007/BF02985802
10.1016/j.nicl.2014.07.003
10.1016/j.neuroimage.2010.02.059
10.1016/j.neucom.2021.06.083
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3344995
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_9e76daecdb354316a425ffb90f4044a9
38113163
10_1109_TNSRE_2023_3344995
10366289
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20221487
  funderid: 10.13039/501100004608
GroupedDBID ---
-~X
0R~
29I
4.4
5GY
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
53G
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-89a8c0b17695f3e96892d30ad5c510ca87f17cea2db3a7d0063c26b73697b073
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001144547700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:53:12 EDT 2025
Thu Jul 10 23:15:24 EDT 2025
Mon Jul 14 07:42:15 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Sat Nov 29 01:47:18 EST 2025
Tue Nov 18 22:37:42 EST 2025
Wed Aug 27 02:35:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-89a8c0b17695f3e96892d30ad5c510ca87f17cea2db3a7d0063c26b73697b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6815-5856
0000-0002-8392-5118
0009-0005-0168-0567
0000-0002-9190-507X
0009-0006-4311-1212
OpenAccessLink https://ieeexplore.ieee.org/document/10366289
PMID 38113163
PQID 2915734849
PQPubID 85423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9e76daecdb354316a425ffb90f4044a9
proquest_miscellaneous_2904156874
ieee_primary_10366289
pubmed_primary_38113163
proquest_journals_2915734849
crossref_primary_10_1109_TNSRE_2023_3344995
crossref_citationtrail_10_1109_TNSRE_2023_3344995
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
Kingma (ref30) 2013
ref32
Defferrard (ref28); 29
ref2
ref1
ref17
ref16
ref38
ref18
Zhou (ref22) 2023
Bruna (ref26) 2013
ref24
ref23
ref25
ref42
ref41
Yu (ref19)
ref44
ref21
ref43
Springenberg (ref39) 2014
ref29
ref8
ref9
ref4
Kalainathan (ref20) 2022; 23
ref3
ref6
ref5
Guyon (ref35) 2002; 46
Kipf (ref27) 2016
ref40
Hoyer (ref7); 21
References_xml – ident: ref14
  doi: 10.3390/make1010019
– ident: ref40
  doi: 10.1109/TMI.2019.2933160
– ident: ref18
  doi: 10.1109/TPAMI.2015.2511754
– year: 2013
  ident: ref26
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv:1312.6203
– ident: ref42
  doi: 10.1016/j.media.2019.101630
– ident: ref21
  doi: 10.1609/aaai.v34i04.5921
– ident: ref5
  doi: 10.1016/j.neuroimage.2013.07.019
– ident: ref38
  doi: 10.1109/ICCV.2017.74
– ident: ref43
  doi: 10.1007/s11517-022-02558-4
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: ref35
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref11
  doi: 10.1016/j.neuroimage.2016.07.058
– ident: ref9
  doi: 10.1371/journal.pone.0015238
– ident: ref3
  doi: 10.1109/JBHI.2018.2875456
– volume: 21
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref7
  article-title: Nonlinear causal discovery with additive noise models
– ident: ref29
  doi: 10.1137/1.9781611977172.48
– year: 2023
  ident: ref22
  article-title: On the opportunity of causal deep generative models: A survey and future directions
  publication-title: arXiv:2301.12351
– ident: ref24
  doi: 10.1038/npp.2009.115
– ident: ref37
  doi: 10.1007/s00429-010-0283-8
– volume: 23
  start-page: 9831
  issue: 1
  year: 2022
  ident: ref20
  article-title: Structural agnostic modeling: Adversarial learning of causal graphs
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1007/s11571-020-09630-5
– year: 2013
  ident: ref30
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– ident: ref15
  doi: 10.26599/TST.2021.9010081
– ident: ref17
  doi: 10.1109/JBHI.2019.2946676
– ident: ref33
  doi: 10.1109/JBHI.2023.3265364
– ident: ref2
  doi: 10.1016/j.neulet.2014.06.043
– ident: ref4
  doi: 10.1016/j.jneumeth.2020.108884
– ident: ref13
  doi: 10.1002/SERIES1345
– ident: ref44
  doi: 10.31083/j.jin2102057
– ident: ref41
  doi: 10.1002/hbm.23240
– ident: ref23
  doi: 10.1093/cercor/bhs270
– volume: 29
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref10
  doi: 10.1016/j.jneumeth.2017.03.006
– ident: ref16
  doi: 10.1038/s41598-021-87411-8
– start-page: 7154
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref19
  article-title: DAG-GNN: DAG structure learning with graph neural networks
– year: 2016
  ident: ref27
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
– ident: ref32
  doi: 10.1038/s41598-021-93190-z
– ident: ref1
  doi: 10.1198/jasa.2009.0126
– year: 2014
  ident: ref39
  article-title: Striving for simplicity: The all convolutional net
  publication-title: arXiv:1412.6806
– ident: ref25
  doi: 10.1016/j.actbio.2021.06.024
– ident: ref34
  doi: 10.1609/aaai.v37i7.26031
– ident: ref36
  doi: 10.1007/BF02985802
– ident: ref6
  doi: 10.1016/j.nicl.2014.07.003
– ident: ref31
  doi: 10.1016/j.neuroimage.2010.02.059
– ident: ref8
  doi: 10.1016/j.neucom.2021.06.083
SSID ssj0017657
Score 2.4545255
Snippet Identifying causality from observational time-series data is a key problem in dealing with complex dynamic systems. Inferring the direction of connection...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Alzheimer’s Disease (AD)
Autism
Autism Spectrum Disorder (ASD)
Autoencoder
Biomarkers
Brain
Brain - diagnostic imaging
Brain mapping
Brain modeling
Causal inference
Causality
Data exchange
Data models
Diseases
fMRI
Functional magnetic resonance imaging
Humans
Magnetic Resonance Imaging - methods
Medical imaging
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Time series
Time series analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4lEgUJCRgAtKm8SOHR-7pRUHtKrKCvVm-SkVwabaZPn9zNjJansALlxjO7HmYX8Te74h5F3jrI3GuRIWPl5yUzelkl6UouK-sV0Q3icS1y9yueyur9XlXqkvvBOW6YGz4E5UkMKb4LxlKW3bgJHFaFUVecW5Sal7lVRzMDWdH0jRyjlFplInq-XXq_NjrBR-zBgHkN_e2YYSW_9UXuXPSDPtOBePyMMJKtLTPMXH5F5YPyHv92mB6SpzAtAP9OoO4_ZT8v1TCLf0zGyHBLTpN4iJ51Gn27FH_kofNnSZr4FTwK40J-2mxCcKuJBe9iM-gBGLm_4n3uPZDLSPdIFlJejM2zkcktXF-erscznVVSgdF81Ydsp0rrIgJNVGFpToVONZZXzrwEOd6WSspQumAZkb6RHFuEZYyYSSFpaEZ-Rg3a_DC0KDjKITSC8AsArAAwRPXNkmIkuadS0rSD1LWbtJAlj64odOsUeldNKMRs3oSTMF-bgbc5sZN_7ae4HK2_VEtuz0AGxITzak_2VDBTlE1e99jgkBkWhBjmZb0JNrD7pRdYuUQBya3-6awSnxpMWsQ7_FPsh8IDrJC_I829Du5QCRapgDe_k_Zv6KPABp8PxP6IgcjJtteE3uu1_jzbB5k3ziN8wTDww
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep causality variational autoencoder network for identifying the potential biomarkers of brain disorders
URI https://ieeexplore.ieee.org/document/10366289
https://www.ncbi.nlm.nih.gov/pubmed/38113163
https://www.proquest.com/docview/2915734849
https://www.proquest.com/docview/2904156874
https://doaj.org/article/9e76daecdb354316a425ffb90f4044a9
Volume 32
WOSCitedRecordID wos001144547700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZo1QMXWkqhoWVlJOCCsiS2Y8dHHq04oBUqe9hb5FekIpSsNkl_PzNONmoPReIW-RE_xmN_fsw3hLxjztraOJfCxCdSYXKWauVlKjPhmS2D9D6SuP5Qq1W52eifk7F6tIUJIcTHZ2GJn_Eu37duwKMy0HAuJewQDsiBUnI01pqvDJSMtJ6gwVAmZ9neQibTn9arXzdXS3QUvuRcAMYvHqxCkax_8q7yONCMC8718X9W9YQ8m5Al_TwOhefkSWhOyfv7LMJ0PVII0A_05gFB9wvy-1sIW-rM0EVcTu9gC73PZYa-RbpLH3a0GV-NU4C69Dba-EY7KQowkm7bHgMgB9r047OfXUfbmlr0QkH9RPPZnZH19dX66_d0csOQOiFZn5balC6z0MG6qHnQstTM88z4woFCO1OqOlcuGOYtN8oj6HFMWsWlVhZmkJfksGmbcE5oULUsJbIRAAoDrAF7LaEtq5FUzbqCJyTfS6VyUw-gp4w_VdyqZLqKkqxQktUkyYR8nPNsR4KOf6b-gsKeUyK5dgwA4VWTrlY6KOlNcNCeyBRgYF6ra6uzWmRCGJ2QMxT4veJGWSfkcj92qmkm6Cqm8wIZhAREv52jQYfxYsY0oR0wDRIlyFKJhLwax9z8c0BUOdSBv36k0AvyFBooxlOhS3LY74bwhhy5u_622y1AUTblIh40LKK6_AV7CxER
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagINELaymBAkYCLihDYjt2fGRpVcQwQmUOvUXeIhWhZDRJ-vt5z8lE7aFI3CIv8fL87M_L-x4hb5mztjbOpTDxiVSYnKVaeZnKTHhmyyC9jySuS7Valefn-udkrB5tYUII8fFZWOBnvMv3rRvwqAw0nEsJO4Tb5E4hBMtGc6350kDJSOwJOgylcpbtbGQy_XG9-nV2vEBX4QvOBaD84to6FOn6J_8qN0PNuOScPPjPyj4k9ydsST-Ng-ERuRWax-TdVR5huh5JBOh7enaNovsJ-f01hA11ZugiMqeXsIne5TJD3yLhpQ9b2ozvximAXXoRrXyjpRQFIEk3bY8BkAOt-vHhz7ajbU0t-qGgfiL67A7I-uR4_eU0nRwxpE5I1qelNqXLLHSwLmoetCw18zwzvnCg0s6Uqs6VC4Z5y43yCHsck1ZxqZWFOeQp2WvaJjwjNKhalhL5CACHAdqA3ZbQltVIq2ZdwROS76RSuakH0FfGnypuVjJdRUlWKMlqkmRCPsx5NiNFxz9Tf0ZhzymRXjsGgPCqSVsrHZT0JjhoT-QKMDCz1bXVWS0yIYxOyAEK_Epxo6wTcrQbO9U0F3QV03mBHEICot_M0aDFeDVjmtAOmAapEmSpREIOxzE3_xwwVQ514M9vKPQ1uXe6_rGslt9W31-QfWisGM-Ijshevx3CS3LXXfYX3fZVVJe_8P8Sew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Causality+Variational+Autoencoder+Network+for+Identifying+the+Potential+Biomarkers+of+Brain+Disorders&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Alfakih%2C+Amani&rft.au=Xia%2C+Zhengwang&rft.au=Ali%2C+Bahzar&rft.au=Mamoon%2C+Saqib&rft.date=2024-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=32&rft.spage=112&rft_id=info:doi/10.1109%2FTNSRE.2023.3344995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon