3D ActionSLAM: wearable person tracking in multi-floor environments

We present 3D ActionSLAM, a stand-alone wearable system that can track people in previously unknown multi-floor environments with sub-room accuracy. ActionSLAM stands for action-based simultaneous localization and mapping: It fuses dead reckoning data from a foot-mounted inertial measurement unit wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Personal and ubiquitous computing Ročník 19; číslo 1; s. 123 - 141
Hlavní autoři: Hardegger, Michael, Roggen, Daniel, Tröster, Gerhard
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.01.2015
Springer Nature B.V
Témata:
ISSN:1617-4909, 1617-4917
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present 3D ActionSLAM, a stand-alone wearable system that can track people in previously unknown multi-floor environments with sub-room accuracy. ActionSLAM stands for action-based simultaneous localization and mapping: It fuses dead reckoning data from a foot-mounted inertial measurement unit with the recognition of location-related actions to build and update a local landmark map. Simultaneously, this map compensates for position drift errors that accumulate in open-loop tracking by means of a particle filter. To evaluate the system performance, we analyzed 23 tracks with a total walked distance of 6,489 m in buildings with up to three floors. The algorithm robustly (93 % of runs converged) mapped the areas with a mean landmark positioning error of 0.59 m. As ActionSLAM is fully stand-alone and not dependent on external infrastructure, it is well suited for patient tracking in remote health care applications. The algorithm is computationally light-weight and runs in real-time on a Samsung Galaxy S4, enabling immediate location-aware feedback. Finally, we propose visualization techniques to facilitate the interpretation of tracking data acquired with 3D ActionSLAM.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1617-4909
1617-4917
DOI:10.1007/s00779-014-0815-y