A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants
Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed....
Uloženo v:
| Vydáno v: | Energy Ročník 223; s. 120026 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
15.05.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison.
•AML is introduced to establish the optimal combination of different forecast models.•The raw data of multi-region PV plants are reconstructed through suitable operators.•SPG mechanism model is applied to generate suitable candidate operators.•GA algorithm is developed to identify optimal operator set for different PV plant. |
|---|---|
| AbstractList | Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison. Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison. •AML is introduced to establish the optimal combination of different forecast models.•The raw data of multi-region PV plants are reconstructed through suitable operators.•SPG mechanism model is applied to generate suitable candidate operators.•GA algorithm is developed to identify optimal operator set for different PV plant. |
| ArticleNumber | 120026 |
| Author | Zhao, Wei Zhang, Haoran Huang, Liqiao Dai, Yuanhao Shang, Wenlong Liang, Yongtu Zheng, Jianqin |
| Author_xml | – sequence: 1 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China – sequence: 2 givenname: Haoran surname: Zhang fullname: Zhang, Haoran email: zhang_ronan@csis.u-tokyo.ac.jp organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan – sequence: 3 givenname: Jianqin surname: Zheng fullname: Zheng, Jianqin email: 2018214074@student.cup.edu.cn organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China – sequence: 4 givenname: Yuanhao surname: Dai fullname: Dai, Yuanhao organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China – sequence: 5 givenname: Liqiao surname: Huang fullname: Huang, Liqiao organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China – sequence: 6 givenname: Wenlong surname: Shang fullname: Shang, Wenlong organization: Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, PR China – sequence: 7 givenname: Yongtu surname: Liang fullname: Liang, Yongtu organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China |
| BackLink | https://cir.nii.ac.jp/crid/1871146593080430080$$DView record in CiNii |
| BookMark | eNqFkc1u1DAURi1UJKaFN2BhCRZsMvgvTswCqaqAVqrEBtaWx76Z8Sixg-0UzdvjKKy6gI298Pk-X91zja5CDIDQW0r2lFD58byHAOl42TPC6J4yQph8gXa073gju769QjvCJWlaIdgrdJ3zmRDS9krt0OUWz9GHgucEztviY8ATlFN0-GAyOGyWEidTvMWTsScfAI9gUvDhiIeYsDOXxpzAuFrzGxKOS5mXguOAp2UsvklwXCvnUyzxKY7F1KJ5NKHk1-jlYMYMb_7eN-jn1y8_7u6bx-_fHu5uHxsrJCuNYLyzQhGuOgXCqX7ggh9aENzKQRJrYGC2U4ORprVUWGmNa83ByvrWH5ziN-jD1jun-GuBXPTks4WxDgFxyZq1kra1syMVffcMPcclhTpdpRjrhaJ8pcRG2RRzTjDoOfnJpIumRK8-9FlvPvTqQ28-auzTs5j1xawLL8n48X_h91s4eF9z61ntUipkqzjpieCknhX7vGFQF_rkIelsPQRb1SawRbvo__3PH41Utt4 |
| CitedBy_id | crossref_primary_10_1016_j_renene_2023_04_055 crossref_primary_10_1007_s43236_024_00782_9 crossref_primary_10_3390_agronomy14112696 crossref_primary_10_1063_5_0266953 crossref_primary_10_1109_ACCESS_2024_3471073 crossref_primary_10_1016_j_rser_2022_112364 crossref_primary_10_1002_ese3_1994 crossref_primary_10_1016_j_apenergy_2024_125058 crossref_primary_10_1007_s00607_024_01266_1 crossref_primary_10_1016_j_rser_2022_112128 crossref_primary_10_1016_j_renene_2024_120385 crossref_primary_10_1016_j_solener_2024_113044 crossref_primary_10_1007_s12145_022_00839_y crossref_primary_10_1016_j_applthermaleng_2022_119270 crossref_primary_10_1016_j_egyr_2024_09_043 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1016_j_energy_2023_129898 crossref_primary_10_3390_pr12010039 crossref_primary_10_1016_j_energy_2023_129716 crossref_primary_10_1016_j_energy_2021_121729 crossref_primary_10_22399_ijcesen_429 crossref_primary_10_1016_j_psep_2022_04_036 crossref_primary_10_1007_s00202_023_01883_7 crossref_primary_10_1016_j_isci_2024_109892 crossref_primary_10_3390_buildings13082050 crossref_primary_10_3389_fenrg_2021_753732 crossref_primary_10_3390_app11167550 crossref_primary_10_3390_en18184998 crossref_primary_10_1016_j_rineng_2025_104810 crossref_primary_10_3390_en14227820 crossref_primary_10_1016_j_rser_2022_113046 crossref_primary_10_1088_1742_6596_2659_1_012024 crossref_primary_10_1016_j_engappai_2022_105647 crossref_primary_10_1016_j_inffus_2025_103692 crossref_primary_10_1016_j_renene_2022_05_141 crossref_primary_10_1016_j_apenergy_2024_124131 crossref_primary_10_1016_j_petrol_2022_110844 crossref_primary_10_3390_en15239146 crossref_primary_10_1016_j_segan_2023_101028 crossref_primary_10_1016_j_apenergy_2021_118000 crossref_primary_10_1016_j_energy_2025_134792 crossref_primary_10_1016_j_jobe_2023_106997 crossref_primary_10_1007_s11431_022_2111_4 crossref_primary_10_1016_j_ces_2023_118927 crossref_primary_10_3390_su16125254 crossref_primary_10_1016_j_energy_2021_120911 |
| Cites_doi | 10.1016/j.enconman.2016.05.025 10.1016/j.jclepro.2015.08.099 10.1016/j.renene.2019.03.020 10.1016/j.ijforecast.2015.11.002 10.1016/j.energy.2019.04.127 10.1016/j.enconman.2017.11.080 10.1016/j.solener.2019.06.041 10.1016/j.solener.2019.08.044 10.1016/j.compeleceng.2019.07.023 10.1016/j.jclepro.2019.01.096 10.1016/j.renene.2015.08.068 10.1016/j.renene.2018.02.102 10.1016/j.renene.2017.11.011 10.1016/j.energy.2019.01.075 10.1016/j.apenergy.2019.113541 10.1016/j.adapen.2020.100007 10.1016/j.ijforecast.2015.11.013 10.1016/j.energy.2019.115940 10.1109/TIE.2017.2767544 10.1016/j.enbuild.2014.10.002 10.1016/j.solener.2015.08.018 10.1016/j.energy.2019.07.168 10.1016/j.renene.2016.01.039 10.1016/j.resourpol.2019.101470 10.1016/j.solener.2020.06.105 10.1016/j.apenergy.2019.113596 10.1016/j.enconman.2017.11.019 10.1016/j.pecs.2018.10.003 10.1016/j.renene.2020.05.046 10.1016/j.cherd.2019.01.017 10.1016/j.solener.2018.03.066 10.1016/j.renene.2019.09.011 10.1016/j.apenergy.2019.04.056 10.1016/j.jestch.2018.04.013 10.1016/j.isatra.2018.06.004 10.1016/j.oceaneng.2017.06.023 10.1016/j.solener.2017.04.066 10.1016/j.heliyon.2019.e02692 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV May 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV May 15, 2021 |
| DBID | RYH AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.120026 |
| DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_120026 S0360544221002759 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP EFKBS RYH ~HD 29G 6TJ 9DU AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AFJKZ AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c462t-4237c4903979e4d98f343b5e43c6f60caef2c79fa6a5c14c6cad5abc660c8bd93 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637966300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Sun Sep 28 10:29:36 EDT 2025 Thu Sep 25 02:41:06 EDT 2025 Sat Nov 29 07:22:18 EST 2025 Tue Nov 18 22:11:24 EST 2025 Mon Nov 10 09:07:40 EST 2025 Fri Feb 23 02:46:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Solar power generation prediction Automatic machine learning Multi-region photovoltaic plants Genetic algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c462t-4237c4903979e4d98f343b5e43c6f60caef2c79fa6a5c14c6cad5abc660c8bd93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8815-3877 |
| PQID | 2522849130 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2561534370 proquest_journals_2522849130 crossref_primary_10_1016_j_energy_2021_120026 crossref_citationtrail_10_1016_j_energy_2021_120026 nii_cinii_1871146593080430080 elsevier_sciencedirect_doi_10_1016_j_energy_2021_120026 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-15 |
| PublicationDateYYYYMMDD | 2021-05-15 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Vakacharla, Gnana, Xuewei, Narasimaharaju, Bhukya, Banerjee (bib4) 2020; 210 Zheng, Dai, Liang, Liao, Zhang (bib13) 2020 Wang, Zhen, Liu, Mi, Hodge, Shafie-khah (bib36) 2018; 157 Zhang, Liang, Ma, Shen, Yan, Yuan (bib32) 2017; 141 Zheng, Zhang, Dai, Wang, Zheng, Liao (bib45) 2020 Sun, Venugopal, Brandt (bib39) 2019; 188 Liu, Sun (bib34) 2019; 187 Basurto, Arroyo, Vega, Quintián, Calvo-Rolle, Herrero (bib30) 2019; 78 Raza, Mithulananthan, Summerfield (bib21) 2018; 166 Wang, Zhen, Mi, Sun, Su, Yang (bib42) 2015; 86 Gao, Li, Hong, Long (bib23) 2019; 187 Lin, Pai (bib33) 2016; 134 Srivastava, Tiwari, Giri (bib37) 2019; 5 Hannan, Tan, Al-Shetwi, Jern, Begum (bib6) 2020 Larson, Nonnenmacher, Coimbra (bib17) 2016; 91 Huang, Perry (bib48) 2016; 32 Liu, Qin, Zhang, Pei, Wang, Yu (bib28) 2019; 253 Gandoman, Abdel Aleem, Omar, Ahmadi, Alenezi (bib41) 2018; 123 Zhang, Yan, Yu, Obersteiner, Li, Chen (bib3) 2021 Xu, Wei, Ji, Wang, Gao (bib2) 2019; 63 Nagy, Barta, Kazi, Borbély, Simon (bib22) 2016; 32 Rana, Koprinska, Agelidis (bib27) 2016; 121 Notton, Voyant (bib8) 2018 Lan, Zhang, Hong, He, Wen (bib25) 2019; 247 Bakker, Whan, Knap, Schmeits (bib16) 2019; 191 Kushwaha, Pindoriya (bib29) 2019; 140 Nam, Hur (bib19) 2019; 177 Liao, Zhang, Xia, Chen, Li, Liang (bib12) 2019; 144 Alonso-Suárez, David, Branco, Lauret (bib9) 2020; 158 Ghimire, Deo, Raj, Mi (bib44) 2019; 253 Persson, Bacher, Shiga, Madsen (bib49) 2017; 150 Dong, Chang, Wu, Gao (bib18) 2020 Behera, Majumder, Nayak (bib47) 2018; 21 Nonnenmacher, Kaur, Coimbra (bib40) 2016; 86 Zhang, Feng, Zhang, Lu, Wang (bib15) 2018 Heydari, Astiaso Garcia, Keynia, Bisegna, De Santoli (bib35) 2019 Lian, Zhang, Ma, Yang, Chaima (bib1) 2019 Blaga, Sabadus, Stefu, Dughir, Paulescu, Badescu (bib10) 2019; 70 Huva, Verbois, Walsh (bib14) 2020; 147 Wang, Lei, Zhang, Zhou, Peng (bib20) 2019 Rana, Koprinska, Agelidis (bib11) 2015; 122 Eseye, Zhang, Zheng (bib46) 2018; 118 Wen, Zhou, Yang, Lu (bib24) 2019; 171 Sobri, Koohi-Kamali, Rahim (bib26) 2018; 156 Li, Zhang, Wang, Song, Shibasaki (bib38) 2020 Ozoegwu (bib43) 2019; 216 Zhang, Dang, Simoes (bib31) 2018; 81 Zhang, Chen, Yan, Song, Shibasaki, Yan (bib5) 2021; 1 Xu, Liu, Yan, Yan (bib7) 2018; 65 Hannan (10.1016/j.energy.2021.120026_bib6) 2020 Basurto (10.1016/j.energy.2021.120026_bib30) 2019; 78 Wang (10.1016/j.energy.2021.120026_bib20) 2019 Srivastava (10.1016/j.energy.2021.120026_bib37) 2019; 5 Lin (10.1016/j.energy.2021.120026_bib33) 2016; 134 Huang (10.1016/j.energy.2021.120026_bib48) 2016; 32 Larson (10.1016/j.energy.2021.120026_bib17) 2016; 91 Gao (10.1016/j.energy.2021.120026_bib23) 2019; 187 Notton (10.1016/j.energy.2021.120026_bib8) 2018 Nagy (10.1016/j.energy.2021.120026_bib22) 2016; 32 Zheng (10.1016/j.energy.2021.120026_bib45) 2020 Liao (10.1016/j.energy.2021.120026_bib12) 2019; 144 Li (10.1016/j.energy.2021.120026_bib38) 2020 Xu (10.1016/j.energy.2021.120026_bib2) 2019; 63 Zheng (10.1016/j.energy.2021.120026_bib13) 2020 Lan (10.1016/j.energy.2021.120026_bib25) 2019; 247 Sun (10.1016/j.energy.2021.120026_bib39) 2019; 188 Lian (10.1016/j.energy.2021.120026_bib1) 2019 Zhang (10.1016/j.energy.2021.120026_bib3) 2021 Bakker (10.1016/j.energy.2021.120026_bib16) 2019; 191 Nonnenmacher (10.1016/j.energy.2021.120026_bib40) 2016; 86 Persson (10.1016/j.energy.2021.120026_bib49) 2017; 150 Alonso-Suárez (10.1016/j.energy.2021.120026_bib9) 2020; 158 Eseye (10.1016/j.energy.2021.120026_bib46) 2018; 118 Blaga (10.1016/j.energy.2021.120026_bib10) 2019; 70 Huva (10.1016/j.energy.2021.120026_bib14) 2020; 147 Rana (10.1016/j.energy.2021.120026_bib11) 2015; 122 Behera (10.1016/j.energy.2021.120026_bib47) 2018; 21 Rana (10.1016/j.energy.2021.120026_bib27) 2016; 121 Heydari (10.1016/j.energy.2021.120026_bib35) 2019 Kushwaha (10.1016/j.energy.2021.120026_bib29) 2019; 140 Ozoegwu (10.1016/j.energy.2021.120026_bib43) 2019; 216 Dong (10.1016/j.energy.2021.120026_bib18) 2020 Zhang (10.1016/j.energy.2021.120026_bib31) 2018; 81 Liu (10.1016/j.energy.2021.120026_bib34) 2019; 187 Raza (10.1016/j.energy.2021.120026_bib21) 2018; 166 Wang (10.1016/j.energy.2021.120026_bib36) 2018; 157 Zhang (10.1016/j.energy.2021.120026_bib32) 2017; 141 Zhang (10.1016/j.energy.2021.120026_bib5) 2021; 1 Wen (10.1016/j.energy.2021.120026_bib24) 2019; 171 Wang (10.1016/j.energy.2021.120026_bib42) 2015; 86 Xu (10.1016/j.energy.2021.120026_bib7) 2018; 65 Zhang (10.1016/j.energy.2021.120026_bib15) 2018 Nam (10.1016/j.energy.2021.120026_bib19) 2019; 177 Liu (10.1016/j.energy.2021.120026_bib28) 2019; 253 Ghimire (10.1016/j.energy.2021.120026_bib44) 2019; 253 Vakacharla (10.1016/j.energy.2021.120026_bib4) 2020; 210 Sobri (10.1016/j.energy.2021.120026_bib26) 2018; 156 Gandoman (10.1016/j.energy.2021.120026_bib41) 2018; 123 |
| References_xml | – volume: 191 start-page: 138 year: 2019 end-page: 150 ident: bib16 article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation publication-title: Sol Energy – volume: 247 start-page: 389 year: 2019 end-page: 402 ident: bib25 article-title: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network publication-title: Appl Energy – volume: 150 start-page: 423 year: 2017 end-page: 436 ident: bib49 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol Energy – volume: 187 year: 2019 ident: bib34 article-title: Random forest solar power forecast based on classification optimization publication-title: Energy – volume: 78 start-page: 373 year: 2019 end-page: 387 ident: bib30 article-title: A Hybrid Intelligent System to forecast solar energy production publication-title: Comput Electr Eng – start-page: 114 year: 2020 ident: bib18 article-title: A novel convolutional neural network framework based solar irradiance prediction method publication-title: Int J Electr Power Energy Syst – start-page: 198 year: 2019 ident: bib20 article-title: A review of deep learning for renewable energy forecasting – volume: 32 start-page: 1087 year: 2016 end-page: 1093 ident: bib22 article-title: GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach publication-title: Int J Forecast – volume: 70 start-page: 119 year: 2019 end-page: 144 ident: bib10 article-title: A current perspective on the accuracy of incoming solar energy forecasting publication-title: Prog Energy Combust Sci – volume: 141 start-page: 154 year: 2017 end-page: 163 ident: bib32 article-title: An improved PSO method for optimal design of subsea oil pipelines publication-title: Ocean Eng – volume: 123 start-page: 793 year: 2018 end-page: 805 ident: bib41 article-title: Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects publication-title: Renew Energy – volume: 5 year: 2019 ident: bib37 article-title: Solar radiation forecasting using MARS, CART, M5, and random forest model: a case study for India publication-title: Heliyon – volume: 63 year: 2019 ident: bib2 article-title: Global renewable energy development: influencing factors, trend predictions and countermeasures publication-title: Resour Pol – volume: 118 start-page: 357 year: 2018 end-page: 367 ident: bib46 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy – start-page: 256 year: 2020 ident: bib6 article-title: Optimized controller for renewable energy sources integration into microgrid: functions, constraints and suggestions publication-title: J Clean Prod – volume: 81 start-page: 105 year: 2018 end-page: 120 ident: bib31 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Trans – start-page: 251 year: 2019 ident: bib35 article-title: A novel composite neural network based method for wind and solar power forecasting in microgrids publication-title: Appl Energy – volume: 166 start-page: 226 year: 2018 end-page: 241 ident: bib21 article-title: Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination publication-title: Sol Energy – volume: 216 start-page: 1 year: 2019 end-page: 13 ident: bib43 article-title: Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number publication-title: J Clean Prod – volume: 65 start-page: 6625 year: 2018 end-page: 6634 ident: bib7 article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage publication-title: IEEE Trans Ind Electron – volume: 177 start-page: 503 year: 2019 end-page: 510 ident: bib19 article-title: A hybrid spatio-temporal forecasting of solar generating resources for grid integration publication-title: Energy – start-page: 77 year: 2018 end-page: 114 ident: bib8 article-title: Forecasting of intermittent solar energy resource. Advances in renewable energies and power technologies – volume: 156 start-page: 459 year: 2018 end-page: 497 ident: bib26 article-title: Solar photovoltaic generation forecasting methods: a review publication-title: Energy Convers Manag – volume: 122 start-page: 191 year: 2015 end-page: 203 ident: bib11 article-title: 2D-interval forecasts for solar power production publication-title: Sol Energy – volume: 147 start-page: 663 year: 2020 end-page: 671 ident: bib14 article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model publication-title: Renew Energy – volume: 140 start-page: 124 year: 2019 end-page: 139 ident: bib29 article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast publication-title: Renew Energy – volume: 32 start-page: 1081 year: 2016 end-page: 1086 ident: bib48 article-title: A semi-empirical approach using gradient boosting andk-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting publication-title: Int J Forecast – volume: 91 start-page: 11 year: 2016 end-page: 20 ident: bib17 article-title: Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest publication-title: Renew Energy – volume: 121 start-page: 380 year: 2016 end-page: 390 ident: bib27 article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting publication-title: Energy Convers Manag – volume: 86 start-page: 427 year: 2015 end-page: 438 ident: bib42 article-title: Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting publication-title: Energy Build – volume: 86 start-page: 866 year: 2016 end-page: 876 ident: bib40 article-title: Day-ahead resource forecasting for concentrated solar power integration publication-title: Renew Energy – volume: 158 start-page: 554 year: 2020 end-page: 573 ident: bib9 article-title: Intra-day solar probabilistic forecasts including local short-term variability and satellite information publication-title: Renew Energy – volume: 157 start-page: 123 year: 2018 end-page: 135 ident: bib36 article-title: Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting publication-title: Energy Convers Manag – volume: 187 year: 2019 ident: bib23 article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM publication-title: Energy – volume: 188 start-page: 730 year: 2019 end-page: 741 ident: bib39 article-title: Short-term solar power forecast with deep learning: exploring optimal input and output configuration publication-title: Sol Energy – start-page: 31 year: 2020 ident: bib13 article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines publication-title: International Journal of Critical Infrastructure Protection – volume: 1 year: 2021 ident: bib5 article-title: Urban power load profiles under ageing transition integrated with future EVs charging publication-title: Advances in Applied Energy – volume: 253 year: 2019 ident: bib44 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Appl Energy – start-page: 257 year: 2020 ident: bib45 article-title: Time series prediction for output of multi-region solar power plants publication-title: Appl Energy – start-page: 73 year: 2018 end-page: 82 ident: bib15 article-title: Forecast of solar energy production - a deep learning approach publication-title: 2018 IEEE international conference on big knowledge (ICBK) – volume: 134 start-page: 456 year: 2016 end-page: 462 ident: bib33 article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression publication-title: J Clean Prod – start-page: 209 year: 2020 ident: bib38 article-title: A spatial finer electric load estimation method based on night-light satellite image publication-title: Energy – volume: 253 year: 2019 ident: bib28 article-title: Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network publication-title: Appl Energy – volume: 171 start-page: 1053 year: 2019 end-page: 1065 ident: bib24 article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting publication-title: Energy – start-page: 199 year: 2019 ident: bib1 article-title: A review on recent sizing methodologies of hybrid renewable energy systems – start-page: 283 year: 2021 ident: bib3 article-title: 1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown publication-title: Appl Energy – volume: 21 start-page: 428 year: 2018 end-page: 438 ident: bib47 article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique publication-title: Engineering Science and Technology, an International Journal – volume: 144 start-page: 79 year: 2019 end-page: 94 ident: bib12 article-title: A data-driven method for pipeline scheduling optimization publication-title: Chem Eng Res Des – volume: 210 start-page: 128 year: 2020 end-page: 148 ident: bib4 article-title: State-of-the-art power electronics systems for solar-to-grid integration publication-title: Sol Energy – start-page: 77 year: 2018 ident: 10.1016/j.energy.2021.120026_bib8 – start-page: 199 year: 2019 ident: 10.1016/j.energy.2021.120026_bib1 – volume: 121 start-page: 380 year: 2016 ident: 10.1016/j.energy.2021.120026_bib27 article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.025 – volume: 134 start-page: 456 year: 2016 ident: 10.1016/j.energy.2021.120026_bib33 article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.08.099 – volume: 140 start-page: 124 year: 2019 ident: 10.1016/j.energy.2021.120026_bib29 article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.020 – volume: 32 start-page: 1081 issue: 3 year: 2016 ident: 10.1016/j.energy.2021.120026_bib48 article-title: A semi-empirical approach using gradient boosting andk-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2015.11.002 – volume: 177 start-page: 503 year: 2019 ident: 10.1016/j.energy.2021.120026_bib19 article-title: A hybrid spatio-temporal forecasting of solar generating resources for grid integration publication-title: Energy doi: 10.1016/j.energy.2019.04.127 – volume: 157 start-page: 123 year: 2018 ident: 10.1016/j.energy.2021.120026_bib36 article-title: Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.080 – volume: 188 start-page: 730 year: 2019 ident: 10.1016/j.energy.2021.120026_bib39 article-title: Short-term solar power forecast with deep learning: exploring optimal input and output configuration publication-title: Sol Energy doi: 10.1016/j.solener.2019.06.041 – volume: 191 start-page: 138 year: 2019 ident: 10.1016/j.energy.2021.120026_bib16 article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation publication-title: Sol Energy doi: 10.1016/j.solener.2019.08.044 – volume: 78 start-page: 373 year: 2019 ident: 10.1016/j.energy.2021.120026_bib30 article-title: A Hybrid Intelligent System to forecast solar energy production publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.07.023 – start-page: 209 year: 2020 ident: 10.1016/j.energy.2021.120026_bib38 article-title: A spatial finer electric load estimation method based on night-light satellite image publication-title: Energy – volume: 216 start-page: 1 year: 2019 ident: 10.1016/j.energy.2021.120026_bib43 article-title: Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.096 – volume: 86 start-page: 866 year: 2016 ident: 10.1016/j.energy.2021.120026_bib40 article-title: Day-ahead resource forecasting for concentrated solar power integration publication-title: Renew Energy doi: 10.1016/j.renene.2015.08.068 – volume: 123 start-page: 793 year: 2018 ident: 10.1016/j.energy.2021.120026_bib41 article-title: Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects publication-title: Renew Energy doi: 10.1016/j.renene.2018.02.102 – volume: 118 start-page: 357 year: 2018 ident: 10.1016/j.energy.2021.120026_bib46 article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.011 – volume: 171 start-page: 1053 year: 2019 ident: 10.1016/j.energy.2021.120026_bib24 article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting publication-title: Energy doi: 10.1016/j.energy.2019.01.075 – volume: 253 year: 2019 ident: 10.1016/j.energy.2021.120026_bib44 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113541 – volume: 1 year: 2021 ident: 10.1016/j.energy.2021.120026_bib5 article-title: Urban power load profiles under ageing transition integrated with future EVs charging publication-title: Advances in Applied Energy doi: 10.1016/j.adapen.2020.100007 – volume: 32 start-page: 1087 issue: 3 year: 2016 ident: 10.1016/j.energy.2021.120026_bib22 article-title: GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2015.11.013 – volume: 187 year: 2019 ident: 10.1016/j.energy.2021.120026_bib34 article-title: Random forest solar power forecast based on classification optimization publication-title: Energy doi: 10.1016/j.energy.2019.115940 – volume: 65 start-page: 6625 issue: 8 year: 2018 ident: 10.1016/j.energy.2021.120026_bib7 article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2767544 – volume: 86 start-page: 427 year: 2015 ident: 10.1016/j.energy.2021.120026_bib42 article-title: Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting publication-title: Energy Build doi: 10.1016/j.enbuild.2014.10.002 – start-page: 256 year: 2020 ident: 10.1016/j.energy.2021.120026_bib6 article-title: Optimized controller for renewable energy sources integration into microgrid: functions, constraints and suggestions publication-title: J Clean Prod – volume: 122 start-page: 191 year: 2015 ident: 10.1016/j.energy.2021.120026_bib11 article-title: 2D-interval forecasts for solar power production publication-title: Sol Energy doi: 10.1016/j.solener.2015.08.018 – start-page: 114 year: 2020 ident: 10.1016/j.energy.2021.120026_bib18 article-title: A novel convolutional neural network framework based solar irradiance prediction method publication-title: Int J Electr Power Energy Syst – volume: 187 year: 2019 ident: 10.1016/j.energy.2021.120026_bib23 article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM publication-title: Energy doi: 10.1016/j.energy.2019.07.168 – volume: 91 start-page: 11 year: 2016 ident: 10.1016/j.energy.2021.120026_bib17 article-title: Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.039 – volume: 63 year: 2019 ident: 10.1016/j.energy.2021.120026_bib2 article-title: Global renewable energy development: influencing factors, trend predictions and countermeasures publication-title: Resour Pol doi: 10.1016/j.resourpol.2019.101470 – volume: 210 start-page: 128 year: 2020 ident: 10.1016/j.energy.2021.120026_bib4 article-title: State-of-the-art power electronics systems for solar-to-grid integration publication-title: Sol Energy doi: 10.1016/j.solener.2020.06.105 – start-page: 31 year: 2020 ident: 10.1016/j.energy.2021.120026_bib13 article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines publication-title: International Journal of Critical Infrastructure Protection – volume: 253 year: 2019 ident: 10.1016/j.energy.2021.120026_bib28 article-title: Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113596 – start-page: 251 year: 2019 ident: 10.1016/j.energy.2021.120026_bib35 article-title: A novel composite neural network based method for wind and solar power forecasting in microgrids publication-title: Appl Energy – volume: 156 start-page: 459 year: 2018 ident: 10.1016/j.energy.2021.120026_bib26 article-title: Solar photovoltaic generation forecasting methods: a review publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.11.019 – start-page: 257 year: 2020 ident: 10.1016/j.energy.2021.120026_bib45 article-title: Time series prediction for output of multi-region solar power plants publication-title: Appl Energy – volume: 70 start-page: 119 year: 2019 ident: 10.1016/j.energy.2021.120026_bib10 article-title: A current perspective on the accuracy of incoming solar energy forecasting publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.10.003 – volume: 158 start-page: 554 year: 2020 ident: 10.1016/j.energy.2021.120026_bib9 article-title: Intra-day solar probabilistic forecasts including local short-term variability and satellite information publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.046 – volume: 144 start-page: 79 year: 2019 ident: 10.1016/j.energy.2021.120026_bib12 article-title: A data-driven method for pipeline scheduling optimization publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.01.017 – volume: 166 start-page: 226 year: 2018 ident: 10.1016/j.energy.2021.120026_bib21 article-title: Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination publication-title: Sol Energy doi: 10.1016/j.solener.2018.03.066 – volume: 147 start-page: 663 year: 2020 ident: 10.1016/j.energy.2021.120026_bib14 article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model publication-title: Renew Energy doi: 10.1016/j.renene.2019.09.011 – volume: 247 start-page: 389 year: 2019 ident: 10.1016/j.energy.2021.120026_bib25 article-title: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.04.056 – volume: 21 start-page: 428 issue: 3 year: 2018 ident: 10.1016/j.energy.2021.120026_bib47 article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2018.04.013 – start-page: 283 year: 2021 ident: 10.1016/j.energy.2021.120026_bib3 article-title: 1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown publication-title: Appl Energy – volume: 81 start-page: 105 year: 2018 ident: 10.1016/j.energy.2021.120026_bib31 article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model publication-title: ISA Trans doi: 10.1016/j.isatra.2018.06.004 – start-page: 198 year: 2019 ident: 10.1016/j.energy.2021.120026_bib20 – volume: 141 start-page: 154 year: 2017 ident: 10.1016/j.energy.2021.120026_bib32 article-title: An improved PSO method for optimal design of subsea oil pipelines publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.06.023 – volume: 150 start-page: 423 year: 2017 ident: 10.1016/j.energy.2021.120026_bib49 article-title: Multi-site solar power forecasting using gradient boosted regression trees publication-title: Sol Energy doi: 10.1016/j.solener.2017.04.066 – volume: 5 issue: 10 year: 2019 ident: 10.1016/j.energy.2021.120026_bib37 article-title: Solar radiation forecasting using MARS, CART, M5, and random forest model: a case study for India publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02692 – start-page: 73 year: 2018 ident: 10.1016/j.energy.2021.120026_bib15 article-title: Forecast of solar energy production - a deep learning approach |
| SSID | ssj0005899 ssib036351542 ssib001191606 ssib007615874 ssib042110470 ssib020738119 ssib019758481 ssib006544897 ssib002505904 ssib017384433 |
| Score | 2.5494115 |
| Snippet | Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems... |
| SourceID | proquest crossref nii elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120026 |
| SubjectTerms | algorithms Automatic machine learning Electric power Electric power distribution Electric power generation Electric power grids Electric power systems Electricity distribution energy Genetic algorithm Genetic algorithms Geographical distribution Japan Learning algorithms Machine learning Multi-region photovoltaic plants Photovoltaic cells Photovoltaics power generation Power plants prediction Prediction models solar collectors Solar energy Solar power Solar power generation Solar power generation prediction Weather |
| Title | A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants |
| URI | https://dx.doi.org/10.1016/j.energy.2021.120026 https://cir.nii.ac.jp/crid/1871146593080430080 https://www.proquest.com/docview/2522849130 https://www.proquest.com/docview/2561534370 |
| Volume | 223 |
| WOSCitedRecordID | wos000637966300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6DgleEAwmChsyEm9VpjR2EvuxgqKB0MTDgMJL5DqOlqkkYU2m7l_wkznbidNRYOyBF6tynGvS-2r7zt_dIfSSC6kMe0aAzePpozX4z0kwVli0yBYEWlM64dP7-OSEzef8w2Dwo4uFuVzGRcHWa179V1VDHyhbh87eQt1OKHTAZ1A6tKB2aP9J8dNxVeZFraP_09wWArdlosd6xUrHoqlLm6f1myFSqq5yhGVUpuLKEzBDpyBGE-jLpq4aQxcw3ENPV3IAkdVZWZcwtdUCBFVL0WaEck5-G1Koc5muLX3eORy-ngnjnv2s8i2v9bEARBZ9t2r5woDh77nrf21LaH9pRAGyNv0WwUQfudvITRev5Xshpdfm4iAgG7PpRDNIot9O9NbncH6kzOsc6S846odfz6v9y3rnWIgdwe08sVISLSWxUnbQbhCHnA3R7vTtbP6upw0xU5PUPX0Xjmk4g9tP86ftzk6R51vLv9nTnD5A91tjBE8tiB6igSr20N0uVn21h_ZnfRwkDGwXgtUjdDXFBmW4Rxm2KMMGZdihDLcowx3KMOABO5RhgzJsUYbLDG-iDG-iDFuUPUYf38xOXx17bRUPT9IoqD3Nu5KU-_oAWdGUs4xQsggVJTLKIl8KlQUy5pmIRCgnVEZSpKFYyAiusUXKyT4aFmWhniAM8wkXKYPGz2CtIdp3wKNYcRbB3RN_hEj3YyeyTXGvK60sk7-peoQ8d1dlU7zcMD7u9Ji021S7_UwAnDfceQhqh0fT7YTFOiNAyAkYbZRo022EDjpAJO2MskoCsJAY5bDXHKEX7jIsAvpkTxSqbPQYbbdREvtPb_kyz9C9_s95gIb1RaMO0R15Weeri-ct-H8CpHHWIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+point+prediction+method+based+automatic+machine+learning+for+day-ahead+power+output+of+multi-region+photovoltaic+plants&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Haoran&rft.au=Zheng%2C+Jianqin&rft.au=Dai%2C+Yuanhao&rft.date=2021-05-15&rft.issn=0360-5442&rft.volume=223&rft.spage=120026&rft_id=info:doi/10.1016%2Fj.energy.2021.120026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2021_120026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |