A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants

Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed....

Full description

Saved in:
Bibliographic Details
Published in:Energy Vol. 223; p. 120026
Main Authors: Zhao, Wei, Zhang, Haoran, Zheng, Jianqin, Dai, Yuanhao, Huang, Liqiao, Shang, Wenlong, Liang, Yongtu
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 15.05.2021
Elsevier BV
Subjects:
ISSN:0360-5442, 1873-6785
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison. •AML is introduced to establish the optimal combination of different forecast models.•The raw data of multi-region PV plants are reconstructed through suitable operators.•SPG mechanism model is applied to generate suitable candidate operators.•GA algorithm is developed to identify optimal operator set for different PV plant.
AbstractList Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison.
Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems difficult. To promote the integration of solar power into electric power grid, accurate prediction of geographically distributed SPG is needed. In this paper, we present a combined method for day-ahead SPG prediction of multi-region photovoltaic (PV) plants. First, automatic machine learning (AML) is applied to generate the most suitable ensemble prediction model with optimal parameters and then an improved genetic algorithm (GA) is implemented which processes the candidate features by assigning appropriate operators. To achieve more accurate forecast results as well as mine the interpretable relationship between SPG and related weather or PV system factors, the SPG physical model is taken into account. The method performance is evaluated by the real SPG data along with meteorological variables of multi-region PV plants in Hokkaido from 2016 to 2018. Results indicate that the combined method provides acceptable accuracy and outperforms several baselines and other methods used for comparison. •AML is introduced to establish the optimal combination of different forecast models.•The raw data of multi-region PV plants are reconstructed through suitable operators.•SPG mechanism model is applied to generate suitable candidate operators.•GA algorithm is developed to identify optimal operator set for different PV plant.
ArticleNumber 120026
Author Zhao, Wei
Zhang, Haoran
Huang, Liqiao
Dai, Yuanhao
Shang, Wenlong
Liang, Yongtu
Zheng, Jianqin
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 2
  givenname: Haoran
  surname: Zhang
  fullname: Zhang, Haoran
  email: zhang_ronan@csis.u-tokyo.ac.jp
  organization: Center for Spatial Information Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
– sequence: 3
  givenname: Jianqin
  surname: Zheng
  fullname: Zheng, Jianqin
  email: 2018214074@student.cup.edu.cn
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 4
  givenname: Yuanhao
  surname: Dai
  fullname: Dai, Yuanhao
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 5
  givenname: Liqiao
  surname: Huang
  fullname: Huang, Liqiao
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
– sequence: 6
  givenname: Wenlong
  surname: Shang
  fullname: Shang, Wenlong
  organization: Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing, 100124, PR China
– sequence: 7
  givenname: Yongtu
  surname: Liang
  fullname: Liang, Yongtu
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing, 102249, PR China
BackLink https://cir.nii.ac.jp/crid/1871146593080430080$$DView record in CiNii
BookMark eNqFkc1u1DAURi1UJKaFN2BhCRZsMvgvTswCqaqAVqrEBtaWx76Z8Sixg-0UzdvjKKy6gI298Pk-X91zja5CDIDQW0r2lFD58byHAOl42TPC6J4yQph8gXa073gju769QjvCJWlaIdgrdJ3zmRDS9krt0OUWz9GHgucEztviY8ATlFN0-GAyOGyWEidTvMWTsScfAI9gUvDhiIeYsDOXxpzAuFrzGxKOS5mXguOAp2UsvklwXCvnUyzxKY7F1KJ5NKHk1-jlYMYMb_7eN-jn1y8_7u6bx-_fHu5uHxsrJCuNYLyzQhGuOgXCqX7ggh9aENzKQRJrYGC2U4ORprVUWGmNa83ByvrWH5ziN-jD1jun-GuBXPTks4WxDgFxyZq1kra1syMVffcMPcclhTpdpRjrhaJ8pcRG2RRzTjDoOfnJpIumRK8-9FlvPvTqQ28-auzTs5j1xawLL8n48X_h91s4eF9z61ntUipkqzjpieCknhX7vGFQF_rkIelsPQRb1SawRbvo__3PH41Utt4
CitedBy_id crossref_primary_10_1016_j_renene_2023_04_055
crossref_primary_10_1007_s43236_024_00782_9
crossref_primary_10_3390_agronomy14112696
crossref_primary_10_1063_5_0266953
crossref_primary_10_1109_ACCESS_2024_3471073
crossref_primary_10_1016_j_rser_2022_112364
crossref_primary_10_1002_ese3_1994
crossref_primary_10_1016_j_apenergy_2024_125058
crossref_primary_10_1007_s00607_024_01266_1
crossref_primary_10_1016_j_rser_2022_112128
crossref_primary_10_1016_j_renene_2024_120385
crossref_primary_10_1016_j_solener_2024_113044
crossref_primary_10_1007_s12145_022_00839_y
crossref_primary_10_1016_j_applthermaleng_2022_119270
crossref_primary_10_1016_j_egyr_2024_09_043
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1016_j_energy_2023_129898
crossref_primary_10_3390_pr12010039
crossref_primary_10_1016_j_energy_2023_129716
crossref_primary_10_1016_j_energy_2021_121729
crossref_primary_10_22399_ijcesen_429
crossref_primary_10_1016_j_psep_2022_04_036
crossref_primary_10_1007_s00202_023_01883_7
crossref_primary_10_1016_j_isci_2024_109892
crossref_primary_10_3390_buildings13082050
crossref_primary_10_3389_fenrg_2021_753732
crossref_primary_10_3390_app11167550
crossref_primary_10_3390_en18184998
crossref_primary_10_1016_j_rineng_2025_104810
crossref_primary_10_3390_en14227820
crossref_primary_10_1016_j_rser_2022_113046
crossref_primary_10_1088_1742_6596_2659_1_012024
crossref_primary_10_1016_j_engappai_2022_105647
crossref_primary_10_1016_j_inffus_2025_103692
crossref_primary_10_1016_j_renene_2022_05_141
crossref_primary_10_1016_j_apenergy_2024_124131
crossref_primary_10_1016_j_petrol_2022_110844
crossref_primary_10_3390_en15239146
crossref_primary_10_1016_j_segan_2023_101028
crossref_primary_10_1016_j_apenergy_2021_118000
crossref_primary_10_1016_j_energy_2025_134792
crossref_primary_10_1016_j_jobe_2023_106997
crossref_primary_10_1007_s11431_022_2111_4
crossref_primary_10_1016_j_ces_2023_118927
crossref_primary_10_3390_su16125254
crossref_primary_10_1016_j_energy_2021_120911
Cites_doi 10.1016/j.enconman.2016.05.025
10.1016/j.jclepro.2015.08.099
10.1016/j.renene.2019.03.020
10.1016/j.ijforecast.2015.11.002
10.1016/j.energy.2019.04.127
10.1016/j.enconman.2017.11.080
10.1016/j.solener.2019.06.041
10.1016/j.solener.2019.08.044
10.1016/j.compeleceng.2019.07.023
10.1016/j.jclepro.2019.01.096
10.1016/j.renene.2015.08.068
10.1016/j.renene.2018.02.102
10.1016/j.renene.2017.11.011
10.1016/j.energy.2019.01.075
10.1016/j.apenergy.2019.113541
10.1016/j.adapen.2020.100007
10.1016/j.ijforecast.2015.11.013
10.1016/j.energy.2019.115940
10.1109/TIE.2017.2767544
10.1016/j.enbuild.2014.10.002
10.1016/j.solener.2015.08.018
10.1016/j.energy.2019.07.168
10.1016/j.renene.2016.01.039
10.1016/j.resourpol.2019.101470
10.1016/j.solener.2020.06.105
10.1016/j.apenergy.2019.113596
10.1016/j.enconman.2017.11.019
10.1016/j.pecs.2018.10.003
10.1016/j.renene.2020.05.046
10.1016/j.cherd.2019.01.017
10.1016/j.solener.2018.03.066
10.1016/j.renene.2019.09.011
10.1016/j.apenergy.2019.04.056
10.1016/j.jestch.2018.04.013
10.1016/j.isatra.2018.06.004
10.1016/j.oceaneng.2017.06.023
10.1016/j.solener.2017.04.066
10.1016/j.heliyon.2019.e02692
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 15, 2021
DBID RYH
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.120026
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_120026
S0360544221002759
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AFJKZ
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c462t-4237c4903979e4d98f343b5e43c6f60caef2c79fa6a5c14c6cad5abc660c8bd93
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000637966300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Sun Sep 28 10:29:36 EDT 2025
Thu Sep 25 02:41:06 EDT 2025
Sat Nov 29 07:22:18 EST 2025
Tue Nov 18 22:11:24 EST 2025
Mon Nov 10 09:07:40 EST 2025
Fri Feb 23 02:46:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar power generation prediction
Automatic machine learning
Multi-region photovoltaic plants
Genetic algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-4237c4903979e4d98f343b5e43c6f60caef2c79fa6a5c14c6cad5abc660c8bd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8815-3877
PQID 2522849130
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2561534370
proquest_journals_2522849130
crossref_primary_10_1016_j_energy_2021_120026
crossref_citationtrail_10_1016_j_energy_2021_120026
nii_cinii_1871146593080430080
elsevier_sciencedirect_doi_10_1016_j_energy_2021_120026
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Vakacharla, Gnana, Xuewei, Narasimaharaju, Bhukya, Banerjee (bib4) 2020; 210
Zheng, Dai, Liang, Liao, Zhang (bib13) 2020
Wang, Zhen, Liu, Mi, Hodge, Shafie-khah (bib36) 2018; 157
Zhang, Liang, Ma, Shen, Yan, Yuan (bib32) 2017; 141
Zheng, Zhang, Dai, Wang, Zheng, Liao (bib45) 2020
Sun, Venugopal, Brandt (bib39) 2019; 188
Liu, Sun (bib34) 2019; 187
Basurto, Arroyo, Vega, Quintián, Calvo-Rolle, Herrero (bib30) 2019; 78
Raza, Mithulananthan, Summerfield (bib21) 2018; 166
Wang, Zhen, Mi, Sun, Su, Yang (bib42) 2015; 86
Gao, Li, Hong, Long (bib23) 2019; 187
Lin, Pai (bib33) 2016; 134
Srivastava, Tiwari, Giri (bib37) 2019; 5
Hannan, Tan, Al-Shetwi, Jern, Begum (bib6) 2020
Larson, Nonnenmacher, Coimbra (bib17) 2016; 91
Huang, Perry (bib48) 2016; 32
Liu, Qin, Zhang, Pei, Wang, Yu (bib28) 2019; 253
Gandoman, Abdel Aleem, Omar, Ahmadi, Alenezi (bib41) 2018; 123
Zhang, Yan, Yu, Obersteiner, Li, Chen (bib3) 2021
Xu, Wei, Ji, Wang, Gao (bib2) 2019; 63
Nagy, Barta, Kazi, Borbély, Simon (bib22) 2016; 32
Rana, Koprinska, Agelidis (bib27) 2016; 121
Notton, Voyant (bib8) 2018
Lan, Zhang, Hong, He, Wen (bib25) 2019; 247
Bakker, Whan, Knap, Schmeits (bib16) 2019; 191
Kushwaha, Pindoriya (bib29) 2019; 140
Nam, Hur (bib19) 2019; 177
Liao, Zhang, Xia, Chen, Li, Liang (bib12) 2019; 144
Alonso-Suárez, David, Branco, Lauret (bib9) 2020; 158
Ghimire, Deo, Raj, Mi (bib44) 2019; 253
Persson, Bacher, Shiga, Madsen (bib49) 2017; 150
Dong, Chang, Wu, Gao (bib18) 2020
Behera, Majumder, Nayak (bib47) 2018; 21
Nonnenmacher, Kaur, Coimbra (bib40) 2016; 86
Zhang, Feng, Zhang, Lu, Wang (bib15) 2018
Heydari, Astiaso Garcia, Keynia, Bisegna, De Santoli (bib35) 2019
Lian, Zhang, Ma, Yang, Chaima (bib1) 2019
Blaga, Sabadus, Stefu, Dughir, Paulescu, Badescu (bib10) 2019; 70
Huva, Verbois, Walsh (bib14) 2020; 147
Wang, Lei, Zhang, Zhou, Peng (bib20) 2019
Rana, Koprinska, Agelidis (bib11) 2015; 122
Eseye, Zhang, Zheng (bib46) 2018; 118
Wen, Zhou, Yang, Lu (bib24) 2019; 171
Sobri, Koohi-Kamali, Rahim (bib26) 2018; 156
Li, Zhang, Wang, Song, Shibasaki (bib38) 2020
Ozoegwu (bib43) 2019; 216
Zhang, Dang, Simoes (bib31) 2018; 81
Zhang, Chen, Yan, Song, Shibasaki, Yan (bib5) 2021; 1
Xu, Liu, Yan, Yan (bib7) 2018; 65
Hannan (10.1016/j.energy.2021.120026_bib6) 2020
Basurto (10.1016/j.energy.2021.120026_bib30) 2019; 78
Wang (10.1016/j.energy.2021.120026_bib20) 2019
Srivastava (10.1016/j.energy.2021.120026_bib37) 2019; 5
Lin (10.1016/j.energy.2021.120026_bib33) 2016; 134
Huang (10.1016/j.energy.2021.120026_bib48) 2016; 32
Larson (10.1016/j.energy.2021.120026_bib17) 2016; 91
Gao (10.1016/j.energy.2021.120026_bib23) 2019; 187
Notton (10.1016/j.energy.2021.120026_bib8) 2018
Nagy (10.1016/j.energy.2021.120026_bib22) 2016; 32
Zheng (10.1016/j.energy.2021.120026_bib45) 2020
Liao (10.1016/j.energy.2021.120026_bib12) 2019; 144
Li (10.1016/j.energy.2021.120026_bib38) 2020
Xu (10.1016/j.energy.2021.120026_bib2) 2019; 63
Zheng (10.1016/j.energy.2021.120026_bib13) 2020
Lan (10.1016/j.energy.2021.120026_bib25) 2019; 247
Sun (10.1016/j.energy.2021.120026_bib39) 2019; 188
Lian (10.1016/j.energy.2021.120026_bib1) 2019
Zhang (10.1016/j.energy.2021.120026_bib3) 2021
Bakker (10.1016/j.energy.2021.120026_bib16) 2019; 191
Nonnenmacher (10.1016/j.energy.2021.120026_bib40) 2016; 86
Persson (10.1016/j.energy.2021.120026_bib49) 2017; 150
Alonso-Suárez (10.1016/j.energy.2021.120026_bib9) 2020; 158
Eseye (10.1016/j.energy.2021.120026_bib46) 2018; 118
Blaga (10.1016/j.energy.2021.120026_bib10) 2019; 70
Huva (10.1016/j.energy.2021.120026_bib14) 2020; 147
Rana (10.1016/j.energy.2021.120026_bib11) 2015; 122
Behera (10.1016/j.energy.2021.120026_bib47) 2018; 21
Rana (10.1016/j.energy.2021.120026_bib27) 2016; 121
Heydari (10.1016/j.energy.2021.120026_bib35) 2019
Kushwaha (10.1016/j.energy.2021.120026_bib29) 2019; 140
Ozoegwu (10.1016/j.energy.2021.120026_bib43) 2019; 216
Dong (10.1016/j.energy.2021.120026_bib18) 2020
Zhang (10.1016/j.energy.2021.120026_bib31) 2018; 81
Liu (10.1016/j.energy.2021.120026_bib34) 2019; 187
Raza (10.1016/j.energy.2021.120026_bib21) 2018; 166
Wang (10.1016/j.energy.2021.120026_bib36) 2018; 157
Zhang (10.1016/j.energy.2021.120026_bib32) 2017; 141
Zhang (10.1016/j.energy.2021.120026_bib5) 2021; 1
Wen (10.1016/j.energy.2021.120026_bib24) 2019; 171
Wang (10.1016/j.energy.2021.120026_bib42) 2015; 86
Xu (10.1016/j.energy.2021.120026_bib7) 2018; 65
Zhang (10.1016/j.energy.2021.120026_bib15) 2018
Nam (10.1016/j.energy.2021.120026_bib19) 2019; 177
Liu (10.1016/j.energy.2021.120026_bib28) 2019; 253
Ghimire (10.1016/j.energy.2021.120026_bib44) 2019; 253
Vakacharla (10.1016/j.energy.2021.120026_bib4) 2020; 210
Sobri (10.1016/j.energy.2021.120026_bib26) 2018; 156
Gandoman (10.1016/j.energy.2021.120026_bib41) 2018; 123
References_xml – volume: 191
  start-page: 138
  year: 2019
  end-page: 150
  ident: bib16
  article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation
  publication-title: Sol Energy
– volume: 247
  start-page: 389
  year: 2019
  end-page: 402
  ident: bib25
  article-title: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network
  publication-title: Appl Energy
– volume: 150
  start-page: 423
  year: 2017
  end-page: 436
  ident: bib49
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol Energy
– volume: 187
  year: 2019
  ident: bib34
  article-title: Random forest solar power forecast based on classification optimization
  publication-title: Energy
– volume: 78
  start-page: 373
  year: 2019
  end-page: 387
  ident: bib30
  article-title: A Hybrid Intelligent System to forecast solar energy production
  publication-title: Comput Electr Eng
– start-page: 114
  year: 2020
  ident: bib18
  article-title: A novel convolutional neural network framework based solar irradiance prediction method
  publication-title: Int J Electr Power Energy Syst
– start-page: 198
  year: 2019
  ident: bib20
  article-title: A review of deep learning for renewable energy forecasting
– volume: 32
  start-page: 1087
  year: 2016
  end-page: 1093
  ident: bib22
  article-title: GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
  publication-title: Int J Forecast
– volume: 70
  start-page: 119
  year: 2019
  end-page: 144
  ident: bib10
  article-title: A current perspective on the accuracy of incoming solar energy forecasting
  publication-title: Prog Energy Combust Sci
– volume: 141
  start-page: 154
  year: 2017
  end-page: 163
  ident: bib32
  article-title: An improved PSO method for optimal design of subsea oil pipelines
  publication-title: Ocean Eng
– volume: 123
  start-page: 793
  year: 2018
  end-page: 805
  ident: bib41
  article-title: Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects
  publication-title: Renew Energy
– volume: 5
  year: 2019
  ident: bib37
  article-title: Solar radiation forecasting using MARS, CART, M5, and random forest model: a case study for India
  publication-title: Heliyon
– volume: 63
  year: 2019
  ident: bib2
  article-title: Global renewable energy development: influencing factors, trend predictions and countermeasures
  publication-title: Resour Pol
– volume: 118
  start-page: 357
  year: 2018
  end-page: 367
  ident: bib46
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
– start-page: 256
  year: 2020
  ident: bib6
  article-title: Optimized controller for renewable energy sources integration into microgrid: functions, constraints and suggestions
  publication-title: J Clean Prod
– volume: 81
  start-page: 105
  year: 2018
  end-page: 120
  ident: bib31
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Trans
– start-page: 251
  year: 2019
  ident: bib35
  article-title: A novel composite neural network based method for wind and solar power forecasting in microgrids
  publication-title: Appl Energy
– volume: 166
  start-page: 226
  year: 2018
  end-page: 241
  ident: bib21
  article-title: Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination
  publication-title: Sol Energy
– volume: 216
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib43
  article-title: Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number
  publication-title: J Clean Prod
– volume: 65
  start-page: 6625
  year: 2018
  end-page: 6634
  ident: bib7
  article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage
  publication-title: IEEE Trans Ind Electron
– volume: 177
  start-page: 503
  year: 2019
  end-page: 510
  ident: bib19
  article-title: A hybrid spatio-temporal forecasting of solar generating resources for grid integration
  publication-title: Energy
– start-page: 77
  year: 2018
  end-page: 114
  ident: bib8
  article-title: Forecasting of intermittent solar energy resource. Advances in renewable energies and power technologies
– volume: 156
  start-page: 459
  year: 2018
  end-page: 497
  ident: bib26
  article-title: Solar photovoltaic generation forecasting methods: a review
  publication-title: Energy Convers Manag
– volume: 122
  start-page: 191
  year: 2015
  end-page: 203
  ident: bib11
  article-title: 2D-interval forecasts for solar power production
  publication-title: Sol Energy
– volume: 147
  start-page: 663
  year: 2020
  end-page: 671
  ident: bib14
  article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model
  publication-title: Renew Energy
– volume: 140
  start-page: 124
  year: 2019
  end-page: 139
  ident: bib29
  article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast
  publication-title: Renew Energy
– volume: 32
  start-page: 1081
  year: 2016
  end-page: 1086
  ident: bib48
  article-title: A semi-empirical approach using gradient boosting andk-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
  publication-title: Int J Forecast
– volume: 91
  start-page: 11
  year: 2016
  end-page: 20
  ident: bib17
  article-title: Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest
  publication-title: Renew Energy
– volume: 121
  start-page: 380
  year: 2016
  end-page: 390
  ident: bib27
  article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
  publication-title: Energy Convers Manag
– volume: 86
  start-page: 427
  year: 2015
  end-page: 438
  ident: bib42
  article-title: Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting
  publication-title: Energy Build
– volume: 86
  start-page: 866
  year: 2016
  end-page: 876
  ident: bib40
  article-title: Day-ahead resource forecasting for concentrated solar power integration
  publication-title: Renew Energy
– volume: 158
  start-page: 554
  year: 2020
  end-page: 573
  ident: bib9
  article-title: Intra-day solar probabilistic forecasts including local short-term variability and satellite information
  publication-title: Renew Energy
– volume: 157
  start-page: 123
  year: 2018
  end-page: 135
  ident: bib36
  article-title: Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting
  publication-title: Energy Convers Manag
– volume: 187
  year: 2019
  ident: bib23
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
– volume: 188
  start-page: 730
  year: 2019
  end-page: 741
  ident: bib39
  article-title: Short-term solar power forecast with deep learning: exploring optimal input and output configuration
  publication-title: Sol Energy
– start-page: 31
  year: 2020
  ident: bib13
  article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines
  publication-title: International Journal of Critical Infrastructure Protection
– volume: 1
  year: 2021
  ident: bib5
  article-title: Urban power load profiles under ageing transition integrated with future EVs charging
  publication-title: Advances in Applied Energy
– volume: 253
  year: 2019
  ident: bib44
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl Energy
– start-page: 257
  year: 2020
  ident: bib45
  article-title: Time series prediction for output of multi-region solar power plants
  publication-title: Appl Energy
– start-page: 73
  year: 2018
  end-page: 82
  ident: bib15
  article-title: Forecast of solar energy production - a deep learning approach
  publication-title: 2018 IEEE international conference on big knowledge (ICBK)
– volume: 134
  start-page: 456
  year: 2016
  end-page: 462
  ident: bib33
  article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression
  publication-title: J Clean Prod
– start-page: 209
  year: 2020
  ident: bib38
  article-title: A spatial finer electric load estimation method based on night-light satellite image
  publication-title: Energy
– volume: 253
  year: 2019
  ident: bib28
  article-title: Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network
  publication-title: Appl Energy
– volume: 171
  start-page: 1053
  year: 2019
  end-page: 1065
  ident: bib24
  article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting
  publication-title: Energy
– start-page: 199
  year: 2019
  ident: bib1
  article-title: A review on recent sizing methodologies of hybrid renewable energy systems
– start-page: 283
  year: 2021
  ident: bib3
  article-title: 1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown
  publication-title: Appl Energy
– volume: 21
  start-page: 428
  year: 2018
  end-page: 438
  ident: bib47
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Engineering Science and Technology, an International Journal
– volume: 144
  start-page: 79
  year: 2019
  end-page: 94
  ident: bib12
  article-title: A data-driven method for pipeline scheduling optimization
  publication-title: Chem Eng Res Des
– volume: 210
  start-page: 128
  year: 2020
  end-page: 148
  ident: bib4
  article-title: State-of-the-art power electronics systems for solar-to-grid integration
  publication-title: Sol Energy
– start-page: 77
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib8
– start-page: 199
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib1
– volume: 121
  start-page: 380
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib27
  article-title: Univariate and multivariate methods for very short-term solar photovoltaic power forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.025
– volume: 134
  start-page: 456
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib33
  article-title: Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.08.099
– volume: 140
  start-page: 124
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib29
  article-title: A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.03.020
– volume: 32
  start-page: 1081
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib48
  article-title: A semi-empirical approach using gradient boosting andk-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.11.002
– volume: 177
  start-page: 503
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib19
  article-title: A hybrid spatio-temporal forecasting of solar generating resources for grid integration
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.127
– volume: 157
  start-page: 123
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib36
  article-title: Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.080
– volume: 188
  start-page: 730
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib39
  article-title: Short-term solar power forecast with deep learning: exploring optimal input and output configuration
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.06.041
– volume: 191
  start-page: 138
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib16
  article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.08.044
– volume: 78
  start-page: 373
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib30
  article-title: A Hybrid Intelligent System to forecast solar energy production
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.07.023
– start-page: 209
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib38
  article-title: A spatial finer electric load estimation method based on night-light satellite image
  publication-title: Energy
– volume: 216
  start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib43
  article-title: Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.096
– volume: 86
  start-page: 866
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib40
  article-title: Day-ahead resource forecasting for concentrated solar power integration
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.08.068
– volume: 123
  start-page: 793
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib41
  article-title: Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.02.102
– volume: 118
  start-page: 357
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib46
  article-title: Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 171
  start-page: 1053
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib24
  article-title: Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.075
– volume: 253
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib44
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 1
  year: 2021
  ident: 10.1016/j.energy.2021.120026_bib5
  article-title: Urban power load profiles under ageing transition integrated with future EVs charging
  publication-title: Advances in Applied Energy
  doi: 10.1016/j.adapen.2020.100007
– volume: 32
  start-page: 1087
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib22
  article-title: GEFCom2014: probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2015.11.013
– volume: 187
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib34
  article-title: Random forest solar power forecast based on classification optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115940
– volume: 65
  start-page: 6625
  issue: 8
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib7
  article-title: A novel adaptive neural network constrained control for a multi-area interconnected power system with hybrid energy storage
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2767544
– volume: 86
  start-page: 427
  year: 2015
  ident: 10.1016/j.energy.2021.120026_bib42
  article-title: Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.10.002
– start-page: 256
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib6
  article-title: Optimized controller for renewable energy sources integration into microgrid: functions, constraints and suggestions
  publication-title: J Clean Prod
– volume: 122
  start-page: 191
  year: 2015
  ident: 10.1016/j.energy.2021.120026_bib11
  article-title: 2D-interval forecasts for solar power production
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.08.018
– start-page: 114
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib18
  article-title: A novel convolutional neural network framework based solar irradiance prediction method
  publication-title: Int J Electr Power Energy Syst
– volume: 187
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib23
  article-title: Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.168
– volume: 91
  start-page: 11
  year: 2016
  ident: 10.1016/j.energy.2021.120026_bib17
  article-title: Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.039
– volume: 63
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib2
  article-title: Global renewable energy development: influencing factors, trend predictions and countermeasures
  publication-title: Resour Pol
  doi: 10.1016/j.resourpol.2019.101470
– volume: 210
  start-page: 128
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib4
  article-title: State-of-the-art power electronics systems for solar-to-grid integration
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.06.105
– start-page: 31
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib13
  article-title: An online real-time estimation tool of leakage parameters for hazardous liquid pipelines
  publication-title: International Journal of Critical Infrastructure Protection
– volume: 253
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib28
  article-title: Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113596
– start-page: 251
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib35
  article-title: A novel composite neural network based method for wind and solar power forecasting in microgrids
  publication-title: Appl Energy
– volume: 156
  start-page: 459
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib26
  article-title: Solar photovoltaic generation forecasting methods: a review
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.11.019
– start-page: 257
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib45
  article-title: Time series prediction for output of multi-region solar power plants
  publication-title: Appl Energy
– volume: 70
  start-page: 119
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib10
  article-title: A current perspective on the accuracy of incoming solar energy forecasting
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.10.003
– volume: 158
  start-page: 554
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib9
  article-title: Intra-day solar probabilistic forecasts including local short-term variability and satellite information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.046
– volume: 144
  start-page: 79
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib12
  article-title: A data-driven method for pipeline scheduling optimization
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.01.017
– volume: 166
  start-page: 226
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib21
  article-title: Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.03.066
– volume: 147
  start-page: 663
  year: 2020
  ident: 10.1016/j.energy.2021.120026_bib14
  article-title: Comparisons of next-day solar forecasting for Singapore using 3DVAR and 4DVAR data assimilation approaches with the WRF model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.011
– volume: 247
  start-page: 389
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib25
  article-title: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.056
– volume: 21
  start-page: 428
  issue: 3
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib47
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2018.04.013
– start-page: 283
  year: 2021
  ident: 10.1016/j.energy.2021.120026_bib3
  article-title: 1.6 Million transactions replicate distributed PV market slowdown by COVID-19 lockdown
  publication-title: Appl Energy
– volume: 81
  start-page: 105
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib31
  article-title: A new solar power output prediction based on hybrid forecast engine and decomposition model
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.06.004
– start-page: 198
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib20
– volume: 141
  start-page: 154
  year: 2017
  ident: 10.1016/j.energy.2021.120026_bib32
  article-title: An improved PSO method for optimal design of subsea oil pipelines
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2017.06.023
– volume: 150
  start-page: 423
  year: 2017
  ident: 10.1016/j.energy.2021.120026_bib49
  article-title: Multi-site solar power forecasting using gradient boosted regression trees
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.04.066
– volume: 5
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2021.120026_bib37
  article-title: Solar radiation forecasting using MARS, CART, M5, and random forest model: a case study for India
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02692
– start-page: 73
  year: 2018
  ident: 10.1016/j.energy.2021.120026_bib15
  article-title: Forecast of solar energy production - a deep learning approach
SSID ssj0005899
ssib036351542
ssib001191606
ssib007615874
ssib042110470
ssib020738119
ssib019758481
ssib006544897
ssib002505904
ssib017384433
Score 2.5494115
Snippet Solar power generation (SPG) is essentially dependent on spatial and meteorological characteristics which makes the planning and operation of power systems...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120026
SubjectTerms algorithms
Automatic machine learning
Electric power
Electric power distribution
Electric power generation
Electric power grids
Electric power systems
Electricity distribution
energy
Genetic algorithm
Genetic algorithms
Geographical distribution
Japan
Learning algorithms
Machine learning
Multi-region photovoltaic plants
Photovoltaic cells
Photovoltaics
power generation
Power plants
prediction
Prediction models
solar collectors
Solar energy
Solar power
Solar power generation
Solar power generation prediction
Weather
Title A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants
URI https://dx.doi.org/10.1016/j.energy.2021.120026
https://cir.nii.ac.jp/crid/1871146593080430080
https://www.proquest.com/docview/2522849130
https://www.proquest.com/docview/2561534370
Volume 223
WOSCitedRecordID wos000637966300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe6DgkuCAYThQ0ZiVuVKonzYR8rKBocJg5DFC6R49happKENZm6_4I_mWc7Hx0Fxg5crMpxXu2-X-1n-_feQ-i1x4liKVWOF2fMCVTo6ktC16Es40pEmY4obpJNxKendLlkH0ejH50vzNUqLgq62bDqv6oa6kDZ2nX2DuruhUIFfAalQwlqh_KfFD-fVmVe1Nr7P8ttInCbJnqqV6xsypu6tHFavxkipewyR1hGZcavHQ4zdAZiNIG-bOqqMXQBwz10dCYHEFmdl3UJU1vNQVC14m1EqP6Q37oU6limG0uf7w8cvp5zczz7WeY7p9YnHBBZDNWy5QsDhr_nff1bm0L7S8MLkLV9buF7-srdem72_lquEwbBjbnY98nWbOppBkn024nenjlczKQZzkx_wWxofjOu9i_rXc9C7AhuF4mVkmgpiZWyh_b9OGR0jPbn7xfLDwNtiJqcpH3vO3dMwxnc7c2fzJ29Is93ln9j05w9Qg_bzQieWxA9RiNZHKD7na_6-gAdLgY_SGjYLgTrJ-h6jg3K8IAybFGGDcpwjzLcogx3KMOAB9yjDBuUYYsyXCq8jTK8jTJsUfYUfXq3OHtz4rRZPBwRRH7taN6VCJirL5BlkDGqSEDSUAZERCpyBZfKFzFTPOKh8AIRCZ6FPBURPKNpxsghGhdlIZ8hHFEmCVjkvgfbAKKtV0ED5caKKUazlEwQ6X7sRLQh7nWmlVXyN1VPkNO_VdkQL7e0jzs9Jq2Zas3PBMB5y5vHoHbomi49GuuIACEjsGkzo3En6KgDRNLOKOsEhgsmJANbc4Je9Y9hEdA3e7yQZaPb6H1bQGL3-R0H8wI9GP6cR2hcXzbyGN0TV3W-vnzZgv8niKvWUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+point+prediction+method+based+automatic+machine+learning+for+day-ahead+power+output+of+multi-region+photovoltaic+plants&rft.jtitle=Energy+%28Oxford%29&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Haoran&rft.au=Zheng%2C+Jianqin&rft.au=Dai%2C+Yuanhao&rft.date=2021-05-15&rft.issn=0360-5442&rft.volume=223&rft.spage=120026&rft_id=info:doi/10.1016%2Fj.energy.2021.120026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2021_120026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon