Coupling finite element and reliability analysis through proper generalized decomposition model reduction

SUMMARYThe FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 95; číslo 13; s. 1079 - 1093
Hlavní autori: Gallimard, L., Vidal, P., Polit, O.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester Blackwell Publishing Ltd 28.09.2013
Wiley
Wiley Subscription Services, Inc
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARYThe FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi‐material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi‐material model. This parametrized solution is used in conjunction with a first‐order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two‐dimensional plane elasticity are presented.Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi‐material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi‐material model. This parametrized solution is used in conjunction with a first‐order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two‐dimensional plane elasticity are presented.Copyright © 2013 John Wiley & Sons, Ltd.
SUMMARY The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi-material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi-material model. This parametrized solution is used in conjunction with a first-order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two-dimensional plane elasticity are presented.Copyright [copy 2013 John Wiley & Sons, Ltd.
SUMMARY The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi-material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi-material model. This parametrized solution is used in conjunction with a first-order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two-dimensional plane elasticity are presented.Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARYThe FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with reliability analysis algorithms allows to compute the failure probability of the system. However, this coupling leads to successive finite element analysis of parametric models involving high computational effort. Over the past years, model reduction techniques have been developed in order to reduce the computational requirements in the numerical simulation of complex models. The objective of this work is to propose an efficient methodology to compute the failure probability for a multi‐material elastic structure, where the Young moduli are considered as uncertain variables. A proper generalized decomposition algorithm is developed to compute the solution of parametric multi‐material model. This parametrized solution is used in conjunction with a first‐order reliability method to compute the failure probability of the structure. Applications to multilayered structures in two‐dimensional plane elasticity are presented.Copyright © 2013 John Wiley & Sons, Ltd.
Author Polit, O.
Gallimard, L.
Vidal, P.
Author_xml – sequence: 1
  givenname: L.
  surname: Gallimard
  fullname: Gallimard, L.
  email: Correspondence to: L. Gallimard, Université Paris Ouest, 50 rue de Sèvres 92410 Ville d'Avray, France., laurent.gallimard@u-paris10.fr
  organization: LEME, Université Paris Ouest Nanterre La Défense, 50 rue de Sèvres 92410 Ville d'Avray, France
– sequence: 2
  givenname: P.
  surname: Vidal
  fullname: Vidal, P.
  organization: LEME, Université Paris Ouest Nanterre La Défense, 50 rue de Sèvres 92410 Ville d'Avray, France
– sequence: 3
  givenname: O.
  surname: Polit
  fullname: Polit, O.
  organization: LEME, Université Paris Ouest Nanterre La Défense, 50 rue de Sèvres 92410 Ville d'Avray, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27798573$$DView record in Pascal Francis
https://hal.science/hal-01366918$$DView record in HAL
BookMark eNp10Vtv0zAUAGALDYluIPETIiEkeEixHd_yOFXbitSNF9AeLdc5aT0cO9gJUH49iTqKQPBkHfvz0bmco7MQAyD0kuAlwZi-Cx0sGWfqCVoQXMsSUyzP0GJ6qkteK_IMnef8gDEhHFcL5FZx7L0Lu6J1wQ1QgIcOwlCY0BQJvDNb591wmGLjD9nlYtinOO72RZ9iD6nYQYBkvPsBTdGAjV0fsxtcDEUXG_BTjma0c_wcPW2Nz_Di8bxAn66vPq7W5ebDzfvV5aa0TFBVUmy2zIqGkxorpoAIQaHBjQEx9SfbFitKQDQWRNvCFhPLpABKt1YRS0xVXaC3x7x743WfXGfSQUfj9Ppyo-c7TCohaqK-ksm-OdqpmS8j5EF3Llvw3gSIY9aEVbWsGCV8oq_-og9xTNNQZkUV55RjPKnXj8pka3ybTLAun8qgUtaKy7nI5dHZFHNO0GrrBjOPaUjGeU2wnrepp23qeZu_Kz19-JXzH7Q80m_Ow-G_Tt_dXv3pXR7g-8mb9FkLWUmu7-9uNLtnVKyvb7WsfgJ5379J
CODEN IJNMBH
CitedBy_id crossref_primary_10_1016_j_compstruc_2015_05_033
crossref_primary_10_1002_nme_4775
crossref_primary_10_1007_s12206_018_0627_5
crossref_primary_10_1016_j_cma_2019_05_047
crossref_primary_10_1016_j_compstruc_2018_05_001
crossref_primary_10_1002_nme_6448
crossref_primary_10_1186_s40323_020_00168_z
crossref_primary_10_1080_13588265_2016_1215585
crossref_primary_10_1080_13588265_2019_1634335
crossref_primary_10_1007_s00466_022_02214_6
crossref_primary_10_1002_nme_5150
crossref_primary_10_1002_nme_6135
crossref_primary_10_1186_s40323_019_0137_8
crossref_primary_10_1002_nme_5554
crossref_primary_10_1016_j_ijmecsci_2023_108564
Cites_doi 10.1016/j.jnnfm.2010.12.012
10.1061/(ASCE)0733-9399(1986)112:1(85)
10.1016/j.na.2006.02.001
10.1016/S0167-4730(97)00026-X
10.1016/S0951-8320(00)00043-0
10.1016/S0045-7825(02)00211-6
10.1002/nme.3136
10.1016/j.cma.2010.01.009
10.1016/j.compstruct.2011.12.016
10.1016/j.probengmech.2005.07.005
10.1007/978-94-011-5614-1_14
10.1016/j.jnnfm.2006.07.007
10.1007/978-1-4612-1432-8
10.1016/S0029-5493(98)00184-8
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
DOI 10.1002/nme.4548
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 1093
ExternalDocumentID oai:HAL:hal-01366918v1
3057561411
27798573
10_1002_nme_4548
NME4548
ark_67375_WNG_4W426HFM_7
Genre article
GrantInformation_xml – fundername: Publishing Arts Research Council
  funderid: 98‐1846389
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
FEDTE
GBZZK
HF~
HVGLF
IQODW
M6O
PALCI
RIWAO
RNS
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
AIQQE
VOOES
ID FETCH-LOGICAL-c4628-20ab4c6d5190848e1662ed0dae61007ff0821e6dce6ffeb01c476e22bc81c1a33
IEDL.DBID DRFUL
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329152800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Tue Oct 14 20:28:45 EDT 2025
Thu Jul 10 23:08:45 EDT 2025
Fri Jul 25 12:09:34 EDT 2025
Mon Jul 21 09:16:09 EDT 2025
Sat Nov 29 06:43:48 EST 2025
Tue Nov 18 22:03:39 EST 2025
Wed Aug 20 07:24:50 EDT 2025
Tue Nov 11 03:32:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Stratified material
Solid solid interface
Rupture
Structural reliability
model reduction
finite element analysis
Modeling
FORM approximation
Finite element method
Reduction method
Uncertain system
Proper generalized decomposition
Plane elasticity
System reduction
Mechanical system
Reduced order systems
Simulation model
Reduced order model
Algorithm analysis
Structural analysis
structural reliability
proper generalized decomposition
finite element analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4628-20ab4c6d5190848e1662ed0dae61007ff0821e6dce6ffeb01c476e22bc81c1a33
Notes ark:/67375/WNG-4W426HFM-7
istex:0D7ED495063706A13B59E314873C6D6D9FF3E3E4
ArticleID:NME4548
Publishing Arts Research Council - No. 98-1846389
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-9634-4443
0000-0003-1853-5444
0000-0002-4280-4723
OpenAccessLink https://hal.science/hal-01366918
PQID 1428552500
PQPubID 996376
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_01366918v1
proquest_miscellaneous_1439734215
proquest_journals_1428552500
pascalfrancis_primary_27798573
crossref_citationtrail_10_1002_nme_4548
crossref_primary_10_1002_nme_4548
wiley_primary_10_1002_nme_4548_NME4548
istex_primary_ark_67375_WNG_4W426HFM_7
PublicationCentury 2000
PublicationDate 28 September 2013
PublicationDateYYYYMMDD 2013-09-28
PublicationDate_xml – month: 09
  year: 2013
  text: 28 September 2013
  day: 28
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Shi ZJ, Shen J. Convergence of the Polak Ribière Polyak conjugate gradient method. Nonlinear Analysis: Theory, Methods and Applications 2007; 66(6):1428-1441.
Pendola M, Mohamed A, Lemaire M, Hornet P. Combination of finite element and reliability methods in nonlinear fracture mechanics. Reliability Engineering and System Safety 2000; 70:15-27.
Der Kiureghian A, de Stefano M. Efficients algorithms for second order reliability analysis. Journal of Engineering Mechanics 1991; 117(12):37-49.
Allix O, Vidal P. A new multi-solution approach suitable for structural identification problems. Computer Methods in Applied Mechanics and Engineering 2002; 191(25-26):2727-2758.
Nouy A. A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Computer Methods in Applied Mechanics and Engineering 2010; 199(23-24):1603-1626.
Der Kiureghian A, Dakessian T. Multiple design points in first and second-order reliability. Structural Safety 1998; 20:37-49.
Ladevèze P. Nonlinear Computational Structural Mechanics - New Approaches and Non-incremental Methods of Calculation. Springer-Verlag: New York, 1999.
Rackwitz R, Fiessler B. Structural reliability under random load sequences. Computer and Structures 1979; 9(5):484-494.
Chinesta F, Ammar A, Leygue A, Keunings R. An overview of the proper generalized decomposition with applications in computational rheology. Journal of Non-Newtonian Fluid Mechanics 2011; 166(11):578-592.
Ammar A, Mokdada B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2011; 139:153-176.
Gallimard L. Errors bounds for the reliability index in finite element reliability analysis. International Journal for Numerical Methods in Engineering 2011; 87:781-994.
Haukaas T, Der Kiureghian A. Strategies for finding the design point in non-linear finite element reliability analysis. Probabilistic Engineering Mechanics 2006; 21:133-147.
Ditlevsen O, Madsen HO. Structural Reliability Methods. Wiley: New York, 1996.
Hasofer AM, Lind NC. An exact and invariant first order reliability format. Journal of Engineering Mechanics, ASCE 1974; 100(EM1):111-121.
Mohamed A, Lemaire M, Mitteau JC, Meister E. Finite element and reliability: a method for compound variables - application on a cracked heating system. Nuclear Engineering and Design 1998; 185:185-202.
Lemaire M. Fiabilité des structures. Hermes: Paris, 2005.
Vidal P, Gallimard L, Polit O. Assessment of a composite beam finite element based on the proper generalized decomposition. Composite Structures 2012; 94:1900-1910.
Der Kiureghian A, Liu PL. Structural reliability under incomplete probability information. Journal of Engineering Mechanics 1986; 112(1):85-104.
2012; 94
2002; 191
2011; 139
2006; 21
1986; 112
1997
2010; 199
1996
2000; 70
2011; 87
2005
1994
1991; 117
1974; 100
2007; 66
1998; 20
1979; 9
2011; 166
1999
1998; 185
Hasofer AM (e_1_2_9_4_1) 1974; 100
e_1_2_9_20_1
Ditlevsen O (e_1_2_9_2_1) 1996
e_1_2_9_11_1
Zhang Y (e_1_2_9_7_1) 1994
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
Lemaire M (e_1_2_9_3_1) 2005
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
Rackwitz R (e_1_2_9_5_1) 1979; 9
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
Der Kiureghian A (e_1_2_9_6_1) 1991; 117
e_1_2_9_18_1
References_xml – reference: Chinesta F, Ammar A, Leygue A, Keunings R. An overview of the proper generalized decomposition with applications in computational rheology. Journal of Non-Newtonian Fluid Mechanics 2011; 166(11):578-592.
– reference: Lemaire M. Fiabilité des structures. Hermes: Paris, 2005.
– reference: Ammar A, Mokdada B, Chinesta F, Keunings R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics 2011; 139:153-176.
– reference: Gallimard L. Errors bounds for the reliability index in finite element reliability analysis. International Journal for Numerical Methods in Engineering 2011; 87:781-994.
– reference: Ladevèze P. Nonlinear Computational Structural Mechanics - New Approaches and Non-incremental Methods of Calculation. Springer-Verlag: New York, 1999.
– reference: Der Kiureghian A, Dakessian T. Multiple design points in first and second-order reliability. Structural Safety 1998; 20:37-49.
– reference: Allix O, Vidal P. A new multi-solution approach suitable for structural identification problems. Computer Methods in Applied Mechanics and Engineering 2002; 191(25-26):2727-2758.
– reference: Nouy A. A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Computer Methods in Applied Mechanics and Engineering 2010; 199(23-24):1603-1626.
– reference: Vidal P, Gallimard L, Polit O. Assessment of a composite beam finite element based on the proper generalized decomposition. Composite Structures 2012; 94:1900-1910.
– reference: Der Kiureghian A, de Stefano M. Efficients algorithms for second order reliability analysis. Journal of Engineering Mechanics 1991; 117(12):37-49.
– reference: Mohamed A, Lemaire M, Mitteau JC, Meister E. Finite element and reliability: a method for compound variables - application on a cracked heating system. Nuclear Engineering and Design 1998; 185:185-202.
– reference: Ditlevsen O, Madsen HO. Structural Reliability Methods. Wiley: New York, 1996.
– reference: Shi ZJ, Shen J. Convergence of the Polak Ribière Polyak conjugate gradient method. Nonlinear Analysis: Theory, Methods and Applications 2007; 66(6):1428-1441.
– reference: Hasofer AM, Lind NC. An exact and invariant first order reliability format. Journal of Engineering Mechanics, ASCE 1974; 100(EM1):111-121.
– reference: Der Kiureghian A, Liu PL. Structural reliability under incomplete probability information. Journal of Engineering Mechanics 1986; 112(1):85-104.
– reference: Pendola M, Mohamed A, Lemaire M, Hornet P. Combination of finite element and reliability methods in nonlinear fracture mechanics. Reliability Engineering and System Safety 2000; 70:15-27.
– reference: Rackwitz R, Fiessler B. Structural reliability under random load sequences. Computer and Structures 1979; 9(5):484-494.
– reference: Haukaas T, Der Kiureghian A. Strategies for finding the design point in non-linear finite element reliability analysis. Probabilistic Engineering Mechanics 2006; 21:133-147.
– volume: 112
  start-page: 85
  issue: 1
  year: 1986
  end-page: 104
  article-title: Structural reliability under incomplete probability information
  publication-title: Journal of Engineering Mechanics
– start-page: 313
  year: 1997
  end-page: 338
– volume: 117
  start-page: 37
  issue: 12
  year: 1991
  end-page: 49
  article-title: Efficients algorithms for second order reliability analysis
  publication-title: Journal of Engineering Mechanics
– year: 2005
– volume: 70
  start-page: 15
  year: 2000
  end-page: 27
  article-title: Combination of finite element and reliability methods in nonlinear fracture mechanics
  publication-title: Reliability Engineering and System Safety
– volume: 139
  start-page: 153
  year: 2011
  end-page: 176
  article-title: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– volume: 166
  start-page: 578
  issue: 11
  year: 2011
  end-page: 592
  article-title: An overview of the proper generalized decomposition with applications in computational rheology
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– start-page: 297
  year: 1994
  end-page: 304
– year: 1996
– volume: 100
  start-page: 111
  issue: EM1
  year: 1974
  end-page: 121
  article-title: An exact and invariant first order reliability format
  publication-title: Journal of Engineering Mechanics, ASCE
– volume: 21
  start-page: 133
  year: 2006
  end-page: 147
  article-title: Strategies for finding the design point in non‐linear finite element reliability analysis
  publication-title: Probabilistic Engineering Mechanics
– volume: 191
  start-page: 2727
  issue: 25–26
  year: 2002
  end-page: 2758
  article-title: A new multi‐solution approach suitable for structural identification problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 199
  start-page: 1603
  issue: 23‐24
  year: 2010
  end-page: 1626
  article-title: A priori model reduction through proper generalized decomposition for solving time‐dependent partial differential equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 20
  start-page: 37
  year: 1998
  end-page: 49
  article-title: Multiple design points in first and second‐order reliability
  publication-title: Structural Safety
– volume: 94
  start-page: 1900
  year: 2012
  end-page: 1910
  article-title: Assessment of a composite beam finite element based on the proper generalized decomposition
  publication-title: Composite Structures
– volume: 9
  start-page: 484
  issue: 5
  year: 1979
  end-page: 494
  article-title: Structural reliability under random load sequences
  publication-title: Computer and Structures
– volume: 66
  start-page: 1428
  issue: 6
  year: 2007
  end-page: 1441
  article-title: Convergence of the Polak Ribière Polyak conjugate gradient method
  publication-title: Nonlinear Analysis: Theory, Methods and Applications
– volume: 185
  start-page: 185
  year: 1998
  end-page: 202
  article-title: Finite element and reliability: a method for compound variables ‐ application on a cracked heating system
  publication-title: Nuclear Engineering and Design
– volume: 87
  start-page: 781
  year: 2011
  end-page: 994
  article-title: Errors bounds for the reliability index in finite element reliability analysis
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1999
– start-page: 297
  volume-title: Proceedings of the 6th IFIP WG7.5 Reliability and Optimization of Structural System
  year: 1994
  ident: e_1_2_9_7_1
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jnnfm.2010.12.012
– ident: e_1_2_9_19_1
  doi: 10.1061/(ASCE)0733-9399(1986)112:1(85)
– ident: e_1_2_9_21_1
  doi: 10.1016/j.na.2006.02.001
– volume: 117
  start-page: 37
  issue: 12
  year: 1991
  ident: e_1_2_9_6_1
  article-title: Efficients algorithms for second order reliability analysis
  publication-title: Journal of Engineering Mechanics
– ident: e_1_2_9_20_1
  doi: 10.1016/S0167-4730(97)00026-X
– volume-title: Fiabilité des structures
  year: 2005
  ident: e_1_2_9_3_1
– ident: e_1_2_9_11_1
  doi: 10.1016/S0951-8320(00)00043-0
– ident: e_1_2_9_14_1
  doi: 10.1016/S0045-7825(02)00211-6
– ident: e_1_2_9_9_1
  doi: 10.1002/nme.3136
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cma.2010.01.009
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compstruct.2011.12.016
– ident: e_1_2_9_8_1
  doi: 10.1016/j.probengmech.2005.07.005
– volume-title: Structural Reliability Methods
  year: 1996
  ident: e_1_2_9_2_1
– ident: e_1_2_9_10_1
  doi: 10.1007/978-94-011-5614-1_14
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jnnfm.2006.07.007
– volume: 9
  start-page: 484
  issue: 5
  year: 1979
  ident: e_1_2_9_5_1
  article-title: Structural reliability under random load sequences
  publication-title: Computer and Structures
– volume: 100
  start-page: 111
  issue: 1
  year: 1974
  ident: e_1_2_9_4_1
  article-title: An exact and invariant first order reliability format
  publication-title: Journal of Engineering Mechanics, ASCE
– ident: e_1_2_9_13_1
  doi: 10.1007/978-1-4612-1432-8
– ident: e_1_2_9_18_1
  doi: 10.1016/S0029-5493(98)00184-8
SSID ssj0011503
Score 2.1698985
Snippet SUMMARYThe FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM...
The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM with...
SUMMARY The FEM is the main tool used for structural analysis. When the design of the mechanical system involves uncertain parameters, a coupling of the FEM...
SourceID hal
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1079
SubjectTerms Algorithms
Computer simulation
Engineering Sciences
Exact sciences and technology
Failure
finite element analysis
Finite element method
FORM approximation
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Joining
Mathematical analysis
Mathematical models
Mathematics
Mechanics
Mechanics of materials
model reduction
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Physics
proper generalized decomposition
Reliability analysis
Sciences and techniques of general use
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
structural reliability
Title Coupling finite element and reliability analysis through proper generalized decomposition model reduction
URI https://api.istex.fr/ark:/67375/WNG-4W426HFM-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4548
https://www.proquest.com/docview/1428552500
https://www.proquest.com/docview/1439734215
https://hal.science/hal-01366918
Volume 95
WOSCitedRecordID wos000329152800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb5RAEJ7Yng_6YLVqRGuzGqNP2NsFluWxqT3v4e5ijE37tllgaS8q10CvUX-9M-xC7hJNTHwiwADLMsN-sN98A_AmwkFMVYZjpGVZGCvLw1xZykaTZZbgiKxcovAsXSzUxUX2ybMqKRfG6UMMP9woMrr3NQW4ydujDdHQ7_Z9jHh7B0YC3RZ9fPTh8-RsNswhINSJeoJHkineS8-OxVF_7NZgtHNFVMgR9e4PokiaFnupcuUttvDnJorthqHJ3v_cwEN44MEnO3be8gju2Hof9jwQZT7M2324v6FSiGvzQdq1fQzLk9WasngvWbUkvMqsI6AzU5eswSY54e-fuO7kTpgvBcSu6b9_wy6d0PXyF16ytERp97wx1lXlwXOUTtH2CZxNTr-cTENfryEsKMMVA87kcSFLBIWk0m-5lMKW49JYSVyMqkK4wa0sCyuryuZjXsSptELkheIFN1H0FHbrVW2fAatS_E7MBc-FKGJe5oYnFQIdKTKZIiBRAbzrH5wuvJg51dT4pp0Ms9DYu5p6N4BXg-W1E_D4g81rfPbDblLcnh7PNG0jSTuZcXXLA3jbucZgZpqvxIpLE32--Kjjc8Q608lcpwEcbvnOcIBI00wlaRTAQe9M2r8xWk3KdwnNMY-xxcNujHWawDG1Xa3JBtFjFCNKw8Z0rvXXW9KL-Sktn_-r4Qu4J7pKH1ko1AHs3jRr-xLuFrc3y7Y59LH1G4N4Jts
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tLRLwwGCACIxhEIKnsNpJHEc8TWOliDRCaNP2ZuWHMyognZJ1Av567uIkaiWQkHiKnJwTx76Lv9h33wG89HASU2XK0dKiyPWV4W6mDEWjySIKcEZWNlA4DpNEnZ9Hn7bgbR8LY_khhgU3soz2e00GTgvSB2usod_NGx8B9zaMfdQifwTjd5-np_GwiYBYx-s9PIJI8Z57diIO-robs9H2F_KFHFP3_iAfybTBbiptfosNALoOY9t5aLrzX29wF-508JMdWn25B1um2oWdDoqyztCbXbi9xlOIpflA7trch8XRckVxvBesXBBiZca6oLO0KliNbbLU3z-xbAlPWJcMiF3Syn_NLizV9eIXPrIw5NTeeY6xNi8P3qOwnLYP4HR6fHI0c7uMDW5OMa5ocmnm57JAWEg8_YZLKUwxKVIjyRujLBFwcCOL3MiyNNmE534ojRBZrnjOU897CKNqWZlHwMoQ_xQzwTMhcp8XWcqDEqGOFJEMEZIoB173I6fzjs6csmp805aIWWjsXU2968DzQfLSUnj8QeYFDv5wmTi3Z4expnNEaicjrq65A69a3RjE0vor-cWFgT5L3mv_DNHObDrXoQP7G8ozVBBhGKkg9BzY67VJd9-MRhP3XUC7zBNs8XAZrZ22cNLKLFckg_jR8xGnYWNa3frrK-lkfkzHx_8q-Axuzk7msY4_JB-fwC3R5v2IXKH2YHRVr8xTuJFfXy2aer8ztN8XUirL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb5RAEJ60d8bog9WqEa11NUafaG8XWJb41LQ9z3hHGmPTvm34sdSLyl2g16h_vTMskLtEExOfyMIAyzLDfOzOfAPw2kMnpoqEo6VFkesrw91UGcpGk3kUoEdWNlF4GsaxuryMzrbgXZcLY_kh-gk3sozme00GbpZ5cbjGGvrdHPgIuLdh6AcIxAcwPPk0Pp_2iwiIdbwuwiOIFO-4Z0fisDt3wxttf6FYyCEN7w-KkUxqHKbC1rfYAKDrMLbxQ-Od_3qC-3CvhZ_syOrLA9gy5S7stFCUtYZe78LdNZ5CbM16ctf6IcyPFyvK471ixZwQKzM2BJ0lZc4q7JOl_v6JbUt4wtpiQGxJM_8Vu7JU1_NfeMvcUFB7GznGmro8eI3ccto-gvPx6efjidtWbHAzynFFk0tSP5M5wkLi6TdcSmHyUZ4YSdEYRYGAgxuZZ0YWhUlHPPNDaYRIM8UznnjeYxiUi9I8AVaE-KeYCp4Kkfk8TxMeFAh1pIhkiJBEOfC2e3M6a-nMqarGN22JmIXG0dU0ug687CWXlsLjDzKv8OX3h4lze3I01bSPSO1kxNUNd-BNoxu9WFJ9pbi4MNAX8XvtXyDamYxnOnRgf0N5-hNEGEYqCD0H9jpt0u03o9bEfRfQKvMIe9wfRmunJZykNIsVySB-9HzEadiZRrf--kg6np3S9um_Cr6A22cnYz39EH98BndEU_YjcoXag8F1tTLP4VZ2cz2vq_3Wzn4DZOQqRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+finite+element+and+reliability+analysis+through+proper+generalized+decomposition+model+reduction&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=GALLIMARD%2C+L&rft.au=VIDAL%2C+P&rft.au=POLIT%2C+O&rft.date=2013-09-28&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=95&rft.issue=13&rft.spage=1079&rft.epage=1093&rft_id=info:doi/10.1002%2Fnme.4548&rft.externalDBID=n%2Fa&rft.externalDocID=27798573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon