Feature Identification With a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events
The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were...
Saved in:
| Published in: | IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 108 - 114 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s −1 - 3.0 m s −1 ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode. |
|---|---|
| AbstractList | The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s −1 - 3.0 m s −1 ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode. The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s−1 - 3.0 m s−1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode. The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s-1 - 3.0 m s-1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s-1 - 3.0 m s-1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode. The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s - 3.0 m s ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode. |
| Author | Donahue, Seth R. Hahn, Michael E. |
| Author_xml | – sequence: 1 givenname: Seth R. surname: Donahue fullname: Donahue, Seth R. organization: Department of Human Physiology, University of Oregon, Eugene, OR, USA – sequence: 2 givenname: Michael E. orcidid: 0000-0001-5024-700X surname: Hahn fullname: Hahn, Michael E. email: mhahn@uoregon.edu organization: Department of Human Physiology, University of Oregon, Eugene, OR, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34851829$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksluFDEQhlsoiCzwAiAhS1y49GC3l-4-RtEkGTEsgkQcLY9dnnjUYw-2O4gzL45nSYRy4OBF5e__y6Wq0-rIBw9V9ZrgCSG4_3Dz-fu36aTBDZlQQknP6bPqhHDe1SWEj7Z3ympGG3xcnaa0wpi0grcvqmPKOk66pj-p_lyCymMENDPgs7NOq-yCRz9cvkMKXcMYXcpOo_NhGWIJrpHypix069O4gXjvEhj0Sek75wHNQUXv_PIf3IaIvkZX9o8-_BrALAEFi66Uy2h6X5Kml9Vzq4YErw7nWXV7Ob25uK7nX65mF-fzWjNBcm2BN7plGANvseFC4Y5ixXDXKQbdYmHEQmDbck2Y6iyxve245q1h1grRckvPqtne1wS1kpvo1ir-lkE5uQuEuJQqlloHkD2FxipD-1Yzpg3vaasaYjkuCaxYQPF6v_faxPBzhJTl2iUNw6A8hDHJRmAuMKaCFvTdE3QVxuhLpYVqKBM9I6RQbw_UuFiDefzeQ6sK0O0BHUNKEazULu-alaNygyRYbqdC7qZCbqdCHqaiSJsn0gf3_4re7EUOAB4FvSjvLaN_AXbkwrM |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_3389_fspor_2023_974186 crossref_primary_10_1038_s41598_025_93166_3 crossref_primary_10_3390_app151810250 crossref_primary_10_1038_s41598_023_29314_4 crossref_primary_10_1109_TNSRE_2024_3407887 crossref_primary_10_1109_JSEN_2024_3469250 |
| Cites_doi | 10.1016/j.gaitpost.2017.06.019 10.1016/j.gaitpost.2012.06.017 10.1109/TNSRE.2018.2868094 10.1109/TSP.2010.2102756 10.1016/j.asoc.2013.07.027 10.3390/s150922089 10.3390/s140305470 10.1109/TNSRE.2016.2536278 10.1016/j.gaitpost.2016.09.023 10.1109/BIOROB.2018.8487694 10.1007/s10439-015-1407-3 10.1109/EMBC.2017.8037735 10.3390/s16010066 10.1016/j.gaitpost.2018.08.025 10.1016/j.neunet.2018.02.017 10.1109/TBME.2004.840727 10.1109/TBME.2008.2003293 10.1016/j.gaitpost.2008.12.003 10.3390/electronics8080894 10.1109/JBHI.2014.2377749 10.1109/TNSRE.2014.2337914 10.1214/14-AOAS742 10.1186/s12938-020-00803-1 10.3390/s100605683 10.1109/BHI.2014.6864429 10.3390/s17112647 10.1155/2020/4760297 10.1109/JBHI.2013.2293887 10.1109/86.867873 10.1016/j.gaitpost.2009.11.014 10.1098/rsif.2012.0980 10.1109/JSEN.2004.823671 10.1109/FUZZ-IEEE.2017.8015447 10.1093/biomet/82.4.711 10.1016/j.bspc.2018.08.030 10.1088/1741-2560/7/5/056005 10.1109/TNSRE.2013.2291907 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
| DOI | 10.1109/TNSRE.2021.3131953 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 114 |
| ExternalDocumentID | oai_doaj_org_article_93e2fad397c44cd5937a21f500f7f6be 34851829 10_1109_TNSRE_2021_3131953 9631374 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c461t-fe52c7400e570d56a0830a4088a4e8bbd6b60f75c14a8f1f9f85c57d4ff6675f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748370800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:53:07 EDT 2025 Fri Jul 11 15:16:42 EDT 2025 Mon Jul 14 10:26:56 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Sat Nov 29 01:47:13 EST 2025 Tue Nov 18 22:41:42 EST 2025 Wed Aug 27 03:00:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c461t-fe52c7400e570d56a0830a4088a4e8bbd6b60f75c14a8f1f9f85c57d4ff6675f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5024-700X |
| OpenAccessLink | https://doaj.org/article/93e2fad397c44cd5937a21f500f7f6be |
| PMID | 34851829 |
| PQID | 2623469411 |
| PQPubID | 85423 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_2623469411 crossref_primary_10_1109_TNSRE_2021_3131953 ieee_primary_9631374 pubmed_primary_34851829 crossref_citationtrail_10_1109_TNSRE_2021_3131953 doaj_primary_oai_doaj_org_article_93e2fad397c44cd5937a21f500f7f6be proquest_miscellaneous_2605600363 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref30 ref33 ref11 ref32 ref10 kidzi?ski (ref31) 2019; 14 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 maqbool (ref40) 2016; 25 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 fox (ref36) 2009 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref4 doi: 10.1016/j.gaitpost.2017.06.019 – ident: ref20 doi: 10.1016/j.gaitpost.2012.06.017 – ident: ref24 doi: 10.1109/TNSRE.2018.2868094 – ident: ref33 doi: 10.1109/TSP.2010.2102756 – ident: ref12 doi: 10.1016/j.asoc.2013.07.027 – ident: ref5 doi: 10.3390/s150922089 – ident: ref18 doi: 10.3390/s140305470 – ident: ref22 doi: 10.1109/TNSRE.2016.2536278 – ident: ref16 doi: 10.1016/j.gaitpost.2016.09.023 – ident: ref25 doi: 10.1109/BIOROB.2018.8487694 – ident: ref39 doi: 10.1007/s10439-015-1407-3 – ident: ref11 doi: 10.1109/EMBC.2017.8037735 – ident: ref6 doi: 10.3390/s16010066 – start-page: 388 year: 2009 ident: ref36 article-title: Sharing features among dynamical systems with beta processes publication-title: Proc Adv Neural Inf Process Syst – ident: ref3 doi: 10.1016/j.gaitpost.2018.08.025 – ident: ref38 doi: 10.1016/j.neunet.2018.02.017 – volume: 25 start-page: 3138 year: 2016 ident: ref40 article-title: A real-time gait event detection for lower limb prosthesis control and evaluation publication-title: IEEE Trans Neural Syst Rehabil Eng – ident: ref28 doi: 10.1109/TBME.2004.840727 – ident: ref32 doi: 10.1109/TBME.2008.2003293 – ident: ref26 doi: 10.1016/j.gaitpost.2008.12.003 – ident: ref9 doi: 10.3390/electronics8080894 – ident: ref1 doi: 10.1109/JBHI.2014.2377749 – ident: ref17 doi: 10.1109/TNSRE.2014.2337914 – ident: ref34 doi: 10.1214/14-AOAS742 – ident: ref8 doi: 10.1186/s12938-020-00803-1 – ident: ref23 doi: 10.3390/s100605683 – ident: ref27 doi: 10.1109/BHI.2014.6864429 – ident: ref7 doi: 10.3390/s17112647 – ident: ref29 doi: 10.1155/2020/4760297 – ident: ref19 doi: 10.1109/JBHI.2013.2293887 – ident: ref30 doi: 10.1109/86.867873 – ident: ref15 doi: 10.1016/j.gaitpost.2009.11.014 – ident: ref35 doi: 10.1098/rsif.2012.0980 – ident: ref14 doi: 10.1109/JSEN.2004.823671 – ident: ref21 doi: 10.1109/FUZZ-IEEE.2017.8015447 – volume: 14 start-page: 1 year: 2019 ident: ref31 article-title: Automatic real-time gait event detection in children using deep neural networks publication-title: PLoS ONE – ident: ref37 doi: 10.1093/biomet/82.4.711 – ident: ref10 doi: 10.1016/j.bspc.2018.08.030 – ident: ref2 doi: 10.1088/1741-2560/7/5/056005 – ident: ref13 doi: 10.1109/TNSRE.2013.2291907 |
| SSID | ssj0017657 |
| Score | 2.4098246 |
| Snippet | The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model... |
| SourceID | doaj proquest pubmed crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 108 |
| SubjectTerms | Algorithms Biomechanical Phenomena Foot Gait Heuristic Heuristic algorithms Heuristic methods Heuristics Hidden Markov models Humans Inertial measurement units Inertial platforms Inertial sensing devices Integrated circuits Lead time Learning algorithms Locomotion Machine learning Machine learning algorithms Markov chains Problem solving real-world gait event detection Time series analysis Unsupervised learning Unsupervised Machine Learning Walking |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbaCqG-cJUjpSAjAS-QNocTO48FbakErKqyFX2L7HhcVmqTKgd_gD_O2HFCkQCJh41WyeScb-zPx3wm5KWACmm6LkKIIggxEuNQsFiGxuRCAdZYAE5n9hNfLsX5eXGyQd7OuTAA4Cafwb7968bydVMNtqvsAMESp5xtkk3O8zFXax4x4LlT9cQAZiFLk2hKkImKg9Xyy-kCm4JJjC3U1I4bbZPbKUOuIRyz_FUfOdl-v87K3ymnq3qO7v7fQ98jdzzFpIcjJu6TDagfkFc35YTpatQSoK_p6W9K3Tvkh-WEQwt0zOA1vkuPfl3336ikxzCM0s708PKiaXHnFZW1xh89q7vh2pY8HWj62c3RBOrlWy9umCNLpiftGrcfp_482hj6Qa57urCzL7uH5OxosXp_HPqFGsKK5XEfGsiSimNpABmPdJZL5HWRZFiASQZCKZ2rPDI8Q1hIYWJTGJFVGdcMEYENFpM-Ilt1U8MTQlVqtOFVIRQDhmxDqTQzQqgcbZGr6IDEk7vKyn8bu5jGZelaM1FROm-X1tul93ZA3sznXI8aHv-0fmdRMFta_W23A71a-nAuixQSIzWSuYqxSmdI8mQSmyzC1zS5goDsWCTMF_EgCMjehKnSlxVdmSADZTafOA7Ii_kwRrkdupE1NIO1iSw1TXN8vMcjFudrT0je_fM9n5LtxKZsuG6jPbLVtwM8I7eq7_26a5-7IPoJNHsYoQ priority: 102 providerName: IEEE |
| Title | Feature Identification With a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events |
| URI | https://ieeexplore.ieee.org/document/9631374 https://www.ncbi.nlm.nih.gov/pubmed/34851829 https://www.proquest.com/docview/2623469411 https://www.proquest.com/docview/2605600363 https://doaj.org/article/93e2fad397c44cd5937a21f500f7f6be |
| Volume | 30 |
| WOSCitedRecordID | wos000748370800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFAeURKCsjARcU1Uns2DkWtKUSsKrKVuwtspNxu1LJVnn0D_SPM3a80fYAXDgkh2QSWZ4Zzze25zMh7xRUCNPrIgbGIEZPTGLFEx1bmysDGLEAPM_sN7lYqNWqON056svtCRvpgceOOywySK2uMWxWnFe1wHCq08QKxqy0uQE3-jJZbJOpsH4gcyG3JTKsOFwufpzNMRlME8xRM7dydCcMebb-cLzKn5GmjzjHj8mjABXp0djEJ-QeNE_J-11aYLocOQHoB3p2h3F7n9w6bDe0QMdKXBum5ujPdX9JNT2BYaRopkdXF5sWH_6iuqnxoudNN1y7EaSDmn73ey2BBhrWix1xRLv0tF3j_et2Xo5uLP2i1z2du12U3TNyfjxffj6Jw4ELccXzpI8tiLSS6NUgJKtFrhGfMc1xINIclDF1bnLsdoHq1comtrBKVELWHDWLiYfNnpO9ZtPAS0JNZmsrq0IZDhxRgzGZsEqZHGURc9QRSbb9X1ahb9yhGFelz0pYUXqdlU5nZdBZRD5O31yPXBx_lf7k1DpJOh5t_wCtqwzWVf7LuiKy74xi-gkOV0kmeUQOtkZSBp_vyhSRJHd1wUlE3k6v0VvdEoxuYDM4GeYgZpZj816MxjX9O-OIflVavPofDX9NHqauUMNPFh2Qvb4d4A15UN30666dkftypWbeZWa-5PE3wOMabw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwEB2VgqAv3MploYCRgBcIdRIncR4L2rKo21VVtmrfIscel5VKUmU3_AA_ztjJhiIBEg8brZLJdc7Yx5c5BnglURNNN3mAnGNAkRgGUoQqsDaVJVKNheh1ZqfZbCbPzvKjDXg35MIgop98hu_dXz-Wb2rduq6yXQJLGGfiGlxPhIh4l601jBlkqdf1pBAWgYgjvk6R4fnufPbleEyNwSikNmrsRo624GYsiG1Izy1_1UheuL9faeXvpNNXPvt3_u-x78LtnmSyvQ4V92ADq_vw-qqgMJt3agLsDTv-Tat7G344Vtg2yLocXtt36rHTxeorU2yCbSfuzPYuzuuGdn5jqjL0YyfVsr10Zc8SDTv0szSR9QKu51fMiSezo2ZB24N1jx6rLfukFis2dvMvlw_gZH88_zgJ-qUaAi3ScBVYTCKdUXmAScZNkipidlwJKsKUQFmWJi1TbrOEgKGkDW1uZaKTzAjCBDVZbPwQNqu6wsfAytgam-lclgIF8Y2yjBMrZZmSLbEVM4Jw7a5C99_GLadxUfj2DM8L7-3CebvovT2Ct8M5l52Kxz-tPzgUDJZOgdvvIK8WfUAXeYyRVYbonBZCm4RonopCm3B6TZuWOIJth4ThIj0IRrCzxlTRlxbLIiIOKlxGcTiCl8NhinM3eKMqrFtnwx05jVN6vEcdFodrr5H85M_3fAG3JvPDaTH9PDt4CluRS-DwnUg7sLlqWnwGN_T31WLZPPcB9RPmxhvo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Identification+With+a+Heuristic+Algorithm+and+an+Unsupervised+Machine+Learning+Algorithm+for+Prior+Knowledge+of+Gait+Events&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Donahue%2C+Seth+R&rft.au=Hahn%2C+Michael+E&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=108&rft_id=info:doi/10.1109%2FTNSRE.2021.3131953&rft_id=info%3Apmid%2F34851829&rft.externalDocID=34851829 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |