Feature Identification With a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events

The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering Vol. 30; pp. 108 - 114
Main Authors: Donahue, Seth R., Hahn, Michael E.
Format: Journal Article
Language:English
Published: United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1534-4320, 1558-0210, 1558-0210
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s −1 - 3.0 m s −1 ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.
AbstractList The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s −1 - 3.0 m s −1 ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.
The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s−1 - 3.0 m s−1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.
The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s-1 - 3.0 m s-1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s-1 - 3.0 m s-1), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.
The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model (BP-AR-HMM) utilizing minimally sampled (≤ 100 Hz) human locomotion data for identification of gait events prior to their occurrence. Data were collected from 16 participants (21-64 years) using a single gyroscopic sensor in an inertial measurement unit on the dorsum of the foot, across multiple locomotion modes, including level ground walking and running (across speeds 0.8 m s - 3.0 m s ), ramps and stairs. Identification of gait events, initial contact (IC) and toe off (TO) with the heuristic algorithm, was 94% across locomotion modes. The features identified prior to initial contact had a lead time of 186.32 ± 86.70 ms, while TO had a lead time of 63.96 ± 46.30 ms. The BP-AR-HMM identified features that indicated an impending IC and TO with 99% accuracy, with a lead time of 59.41 ± 54.41 ms for IC and 90.79 ± 35.51 ms for TO. These approaches are consistent in their identification of gait events and have the potential to be utilized for classification and prediction of locomotion mode.
Author Donahue, Seth R.
Hahn, Michael E.
Author_xml – sequence: 1
  givenname: Seth R.
  surname: Donahue
  fullname: Donahue, Seth R.
  organization: Department of Human Physiology, University of Oregon, Eugene, OR, USA
– sequence: 2
  givenname: Michael E.
  orcidid: 0000-0001-5024-700X
  surname: Hahn
  fullname: Hahn, Michael E.
  email: mhahn@uoregon.edu
  organization: Department of Human Physiology, University of Oregon, Eugene, OR, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34851829$$D View this record in MEDLINE/PubMed
BookMark eNp9ksluFDEQhlsoiCzwAiAhS1y49GC3l-4-RtEkGTEsgkQcLY9dnnjUYw-2O4gzL45nSYRy4OBF5e__y6Wq0-rIBw9V9ZrgCSG4_3Dz-fu36aTBDZlQQknP6bPqhHDe1SWEj7Z3ympGG3xcnaa0wpi0grcvqmPKOk66pj-p_lyCymMENDPgs7NOq-yCRz9cvkMKXcMYXcpOo_NhGWIJrpHypix069O4gXjvEhj0Sek75wHNQUXv_PIf3IaIvkZX9o8-_BrALAEFi66Uy2h6X5Kml9Vzq4YErw7nWXV7Ob25uK7nX65mF-fzWjNBcm2BN7plGANvseFC4Y5ixXDXKQbdYmHEQmDbck2Y6iyxve245q1h1grRckvPqtne1wS1kpvo1ir-lkE5uQuEuJQqlloHkD2FxipD-1Yzpg3vaasaYjkuCaxYQPF6v_faxPBzhJTl2iUNw6A8hDHJRmAuMKaCFvTdE3QVxuhLpYVqKBM9I6RQbw_UuFiDefzeQ6sK0O0BHUNKEazULu-alaNygyRYbqdC7qZCbqdCHqaiSJsn0gf3_4re7EUOAB4FvSjvLaN_AXbkwrM
CODEN ITNSB3
CitedBy_id crossref_primary_10_3389_fspor_2023_974186
crossref_primary_10_1038_s41598_025_93166_3
crossref_primary_10_3390_app151810250
crossref_primary_10_1038_s41598_023_29314_4
crossref_primary_10_1109_TNSRE_2024_3407887
crossref_primary_10_1109_JSEN_2024_3469250
Cites_doi 10.1016/j.gaitpost.2017.06.019
10.1016/j.gaitpost.2012.06.017
10.1109/TNSRE.2018.2868094
10.1109/TSP.2010.2102756
10.1016/j.asoc.2013.07.027
10.3390/s150922089
10.3390/s140305470
10.1109/TNSRE.2016.2536278
10.1016/j.gaitpost.2016.09.023
10.1109/BIOROB.2018.8487694
10.1007/s10439-015-1407-3
10.1109/EMBC.2017.8037735
10.3390/s16010066
10.1016/j.gaitpost.2018.08.025
10.1016/j.neunet.2018.02.017
10.1109/TBME.2004.840727
10.1109/TBME.2008.2003293
10.1016/j.gaitpost.2008.12.003
10.3390/electronics8080894
10.1109/JBHI.2014.2377749
10.1109/TNSRE.2014.2337914
10.1214/14-AOAS742
10.1186/s12938-020-00803-1
10.3390/s100605683
10.1109/BHI.2014.6864429
10.3390/s17112647
10.1155/2020/4760297
10.1109/JBHI.2013.2293887
10.1109/86.867873
10.1016/j.gaitpost.2009.11.014
10.1098/rsif.2012.0980
10.1109/JSEN.2004.823671
10.1109/FUZZ-IEEE.2017.8015447
10.1093/biomet/82.4.711
10.1016/j.bspc.2018.08.030
10.1088/1741-2560/7/5/056005
10.1109/TNSRE.2013.2291907
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2021.3131953
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 114
ExternalDocumentID oai_doaj_org_article_93e2fad397c44cd5937a21f500f7f6be
34851829
10_1109_TNSRE_2021_3131953
9631374
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c461t-fe52c7400e570d56a0830a4088a4e8bbd6b60f75c14a8f1f9f85c57d4ff6675f3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748370800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:53:07 EDT 2025
Fri Jul 11 15:16:42 EDT 2025
Mon Jul 14 10:26:56 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Sat Nov 29 01:47:13 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 03:00:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-fe52c7400e570d56a0830a4088a4e8bbd6b60f75c14a8f1f9f85c57d4ff6675f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5024-700X
OpenAccessLink https://doaj.org/article/93e2fad397c44cd5937a21f500f7f6be
PMID 34851829
PQID 2623469411
PQPubID 85423
PageCount 7
ParticipantIDs proquest_journals_2623469411
crossref_primary_10_1109_TNSRE_2021_3131953
ieee_primary_9631374
pubmed_primary_34851829
crossref_citationtrail_10_1109_TNSRE_2021_3131953
doaj_primary_oai_doaj_org_article_93e2fad397c44cd5937a21f500f7f6be
proquest_miscellaneous_2605600363
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref30
ref33
ref11
ref32
ref10
kidzi?ski (ref31) 2019; 14
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
maqbool (ref40) 2016; 25
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
fox (ref36) 2009
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1016/j.gaitpost.2017.06.019
– ident: ref20
  doi: 10.1016/j.gaitpost.2012.06.017
– ident: ref24
  doi: 10.1109/TNSRE.2018.2868094
– ident: ref33
  doi: 10.1109/TSP.2010.2102756
– ident: ref12
  doi: 10.1016/j.asoc.2013.07.027
– ident: ref5
  doi: 10.3390/s150922089
– ident: ref18
  doi: 10.3390/s140305470
– ident: ref22
  doi: 10.1109/TNSRE.2016.2536278
– ident: ref16
  doi: 10.1016/j.gaitpost.2016.09.023
– ident: ref25
  doi: 10.1109/BIOROB.2018.8487694
– ident: ref39
  doi: 10.1007/s10439-015-1407-3
– ident: ref11
  doi: 10.1109/EMBC.2017.8037735
– ident: ref6
  doi: 10.3390/s16010066
– start-page: 388
  year: 2009
  ident: ref36
  article-title: Sharing features among dynamical systems with beta processes
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref3
  doi: 10.1016/j.gaitpost.2018.08.025
– ident: ref38
  doi: 10.1016/j.neunet.2018.02.017
– volume: 25
  start-page: 3138
  year: 2016
  ident: ref40
  article-title: A real-time gait event detection for lower limb prosthesis control and evaluation
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– ident: ref28
  doi: 10.1109/TBME.2004.840727
– ident: ref32
  doi: 10.1109/TBME.2008.2003293
– ident: ref26
  doi: 10.1016/j.gaitpost.2008.12.003
– ident: ref9
  doi: 10.3390/electronics8080894
– ident: ref1
  doi: 10.1109/JBHI.2014.2377749
– ident: ref17
  doi: 10.1109/TNSRE.2014.2337914
– ident: ref34
  doi: 10.1214/14-AOAS742
– ident: ref8
  doi: 10.1186/s12938-020-00803-1
– ident: ref23
  doi: 10.3390/s100605683
– ident: ref27
  doi: 10.1109/BHI.2014.6864429
– ident: ref7
  doi: 10.3390/s17112647
– ident: ref29
  doi: 10.1155/2020/4760297
– ident: ref19
  doi: 10.1109/JBHI.2013.2293887
– ident: ref30
  doi: 10.1109/86.867873
– ident: ref15
  doi: 10.1016/j.gaitpost.2009.11.014
– ident: ref35
  doi: 10.1098/rsif.2012.0980
– ident: ref14
  doi: 10.1109/JSEN.2004.823671
– ident: ref21
  doi: 10.1109/FUZZ-IEEE.2017.8015447
– volume: 14
  start-page: 1
  year: 2019
  ident: ref31
  article-title: Automatic real-time gait event detection in children using deep neural networks
  publication-title: PLoS ONE
– ident: ref37
  doi: 10.1093/biomet/82.4.711
– ident: ref10
  doi: 10.1016/j.bspc.2018.08.030
– ident: ref2
  doi: 10.1088/1741-2560/7/5/056005
– ident: ref13
  doi: 10.1109/TNSRE.2013.2291907
SSID ssj0017657
Score 2.4098246
Snippet The purpose of this study was to compare a heuristic feature identification algorithm with output from the Beta Process Auto Regressive Hidden Markov Model...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 108
SubjectTerms Algorithms
Biomechanical Phenomena
Foot
Gait
Heuristic
Heuristic algorithms
Heuristic methods
Heuristics
Hidden Markov models
Humans
Inertial measurement units
Inertial platforms
Inertial sensing devices
Integrated circuits
Lead time
Learning algorithms
Locomotion
Machine learning
Machine learning algorithms
Markov chains
Problem solving
real-world gait event detection
Time series analysis
Unsupervised learning
Unsupervised Machine Learning
Walking
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwELXaCqFuyqM8AgUZCdhAqOM4TrIs6JZKwFVVbqG7yLHH5UptUuXBD_DjjJ0HRQIkFokix3GczNg-M_YcE_JcQKItU2ib8FKGwlgIFQ6zIXCtAITJrPfpfvmYLpfZ2Vl-vEFez7EwAOAXn8Ebd-nn8k2te-cq20dlieJUbJLNNJVDrNY8Y5BKz-qJDViEIuZsCpBh-f5q-flkgaYgj9BCjd280Ta5GQvEGplHlr_GI0_bP-6z8nfI6Yeew1v_V-nbZGeEmPRg0Ik7ZAOqu-TFdTphuhq4BOhLevIbU_cu-eEwYd8AHSJ47ejSo1_X3Teq6BH0A7UzPbg4rxtMvKSqMnjQ06rtr1zP04Khn_waTaAjfev5teyIkulxs8bzh8mfR2tL36t1Rxdu9WV7j5weLlbvjsJxo4ZQCxl1oYWE6xR7A0hSZhKpENcxJbADUwKysjSylMymiY6Eymxkc5slOkmNsFaiwWLj-2Srqit4SGjJQcZCIWpQiJUgzjSXlrESU-NUmTIg0SSuQo__xm2mcVF4a4blhZd24aRdjNIOyKv5mauBw-Ofud86LZhzOv5tn4BSLcbmXOQxcKsMgjkthDYJgjzFI5sw_EwrSwjIrtOEuZBRCQKyN-lUMfYVbcERgQoXTxwF5Nl8G1u5m7pRFdS9y8McNI0lVu_BoItz2ZMmP_rzOx-Tbe5CNrzbaI9sdU0PT8gN_b1bt81T34h-AhKGGOE
  priority: 102
  providerName: IEEE
Title Feature Identification With a Heuristic Algorithm and an Unsupervised Machine Learning Algorithm for Prior Knowledge of Gait Events
URI https://ieeexplore.ieee.org/document/9631374
https://www.ncbi.nlm.nih.gov/pubmed/34851829
https://www.proquest.com/docview/2623469411
https://www.proquest.com/docview/2605600363
https://doaj.org/article/93e2fad397c44cd5937a21f500f7f6be
Volume 30
WOSCitedRecordID wos000748370800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFAeURWlZGAi4oquP4kRwL2lIJWFVlC3uLHD_KSiVbbZL-Af44Y8eJtgfgwiE5OI5lecaeb8aezwi9ZpZrRxT4JrQWKTPOpgrMbGqpVtYyU7gQ0_32WS4WxWpVnu1c9eXPhA30wMPAHZW5pU4ZMJuaMW04mFNFM8cJcdKJ2vrVl8hydKbi_oEUXI4pMqQ8Wi6-ns_BGaQZ-Ki53zm6ZYYCW3-8XuXPSDNYnJOH6EGEivh46OIjdMc2j9GbXVpgvBw4AfBbfH6LcXsf_fLYrt9aPGTiuhiaw9_X3Q-s8KntB4pmfHx1udlC4U-sGgMPvmja_tqvIK01-Es4a2lxpGG93KkOaBefbdfw_jTG5fDG4Y9q3eG5P0XZPkEXJ_Plh9M0XriQaiayLnWWUy1hVlsuieFCAT4jisFCpJgt6tqIWsCwc50xVbjMla7gmkvDnBPgeLj8KdprNo19jnBNrciZAuuvAPPYvNBUOEJqKAUBmjpB2Tj-lY5j4y_FuKqCV0LKKsis8jKroswS9G7653rg4vhr7fderFNNz6MdCkC7qqhd1b-0K0H7XimmRmC5ynLJEnQ4KkkV53xbUUCSzOcFZwl6NX2G2eq3YFRjN72vQzzEzAV079mgXFPbOQP0W9Dyxf_o-AG6T32iRggWHaK9btvbl-ievunW7XaG7spVMQtTZhZSHn8Dhn4arw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgWAvfI2PwgAjAS8Q5jiOkz4O1FG0rppGB3uLHPs8Ko1kahv-Af5xzk4ahgRIPCSKHMdxcmf7d2ffzwAvJKbGcU22iShVJK3DSNMwG6EwGlHa3AWf7udJNp3mp6fDow1408fCIGJYfIZv_WWYy7e1abyrbJeUJU4yeQWuplIK3kZr9XMGmQq8ntSEZSQTwdchMny4O5t-Oh6RMShislETP3O0BdcTSWgjD9jy14gUiPu7nVb-DjrD4LN_6_-qfRtudiCT7bVacQc2sLoLLy8TCrNZyybAXrHj37i6t-GHR4XNAlkbw-s6px77Ml99ZZqNsWnJndne-Vm9oMRvTFeWDnZSLZsL3_cs0bLDsEoTWUfgenYpO-FkdrSY0_lg7dFjtWMf9HzFRn795fIenOyPZu_HUbdVQ2SkileRw1SYjPoDTDNuU6UJ2XEtqQvTEvOytKpU3GWpiaXOXeyGLk9NmlnpnCKTxSX3YbOqK3wIrBSoEqkJN2hCS5jkRijHeUmpSaZtOYB4La7CdP_Gb6dxXgR7hg-LIO3CS7vopD2A1_0zFy2Lxz9zv_Na0Of0DNwhgaRadA26GCYonLYE54yUxqYE87SIXcrpM50qcQDbXhP6QjolGMDOWqeKrrdYFoIwqPQRxfEAnve3qZ37yRtdYd34PNyD00RR9R60utiXvdbkR39-5zO4MZ4dTorJx-nBY9gSPoAjOJF2YHO1aPAJXDPfV_Pl4mloUD8ByTUcKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Identification+With+a+Heuristic+Algorithm+and+an+Unsupervised+Machine+Learning+Algorithm+for+Prior+Knowledge+of+Gait+Events&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Donahue%2C+Seth+R&rft.au=Hahn%2C+Michael+E&rft.date=2022&rft.eissn=1558-0210&rft.volume=30&rft.spage=108&rft_id=info:doi/10.1109%2FTNSRE.2021.3131953&rft_id=info%3Apmid%2F34851829&rft.externalDocID=34851829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon