Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection

In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 28; H. 6; S. 1263 - 1275
Hauptverfasser: Zhu, Xiaofeng, Li, Xuelong, Zhang, Shichao, Ju, Chunhua, Wu, Xindong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!