Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming
At present, a lot of references use discrete event simulation to evaluate the fitness of evolved rules, but which simulation configuration can achieve better evolutionary rules in a limited time has not been fully studied. This study proposes three types of hyper-heuristic methods for coevolution of...
Uloženo v:
| Vydáno v: | International journal of production research Ročník 58; číslo 9; s. 2561 - 2580 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Taylor & Francis
02.05.2020
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 0020-7543, 1366-588X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | At present, a lot of references use discrete event simulation to evaluate the fitness of evolved rules, but which simulation configuration can achieve better evolutionary rules in a limited time has not been fully studied. This study proposes three types of hyper-heuristic methods for coevolution of the machine assignment rules (MAR) and job sequencing rules (JSR) to solve the DFJSP, including the cooperative coevolution genetic programming with two sub-populations (CCGP), the genetic programming with two sub-trees (TTGP) and the genetic expression programming with two sub-chromosomes (GEP). After careful parameter tuning, a surrogate simulation model is used to evaluate the fitness of evolved scheduling policies (SP). Computational simulations and comparisons demonstrate that the proposed surrogate-assisted CCGP method (CCGP-SM) shows competitive performance with other evolutionary approaches using the same computation time. Furthermore, the learning process of the proposed methods demonstrates that the surrogate-assisted GP methods help accelerating the evolutionary process and improving the quality of the evolved SPs without a significant increase in the length of SP. In addition, the evolved SPs generated by the CCGP-SM show superior performance as compared with existing rules in the literature. These results demonstrate the effectiveness and robustness of the proposed method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7543 1366-588X |
| DOI: | 10.1080/00207543.2019.1620362 |