Frames for Exact Inversion of the Rank Order Coder

Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe . who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in a rank order co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 23; číslo 2; s. 353 - 359
Hlavní autoři: Masmoudi, K., Antonini, M., Kornprobst, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe . who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to . Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2011.2179557