Pairwise Optimal Weight Realization-Acceleration Technique for Set-Theoretic Adaptive Parallel Subgradient Projection Algorithm
The adaptive parallel subgradient projection (PSP) algorithm was proposed in 2002 as a set-theoretic adaptive filtering algorithm providing fast and stable convergence, robustness against noise, and low computational complexity by using weighted parallel projections onto multiple time-varying closed...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 54; číslo 12; s. 4557 - 4571 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.12.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The adaptive parallel subgradient projection (PSP) algorithm was proposed in 2002 as a set-theoretic adaptive filtering algorithm providing fast and stable convergence, robustness against noise, and low computational complexity by using weighted parallel projections onto multiple time-varying closed half-spaces. In this paper, we present a novel weighting technique named pairwise optimal weight realization (POWER) for further acceleration of the adaptive PSP algorithm. A simple closed-form formula is derived to compute the projection onto the intersection of two closed half-spaces defined by a triplet of vectors. Using the formula inductively, the proposed weighting technique realizes a good direction of update. The resulting weights turn out to be pairwise optimal in a certain sense. The proposed algorithm has the inherently parallel structure composed of q primitive functions, hence its total computational complexity O(qrN) is reduced to O(rN) with q concurrent processors (r: a constant positive integer). Numerical examples demonstrate that the proposed technique for r=1 yields significantly faster convergence than not only adaptive PSP with uniform weights, affine projection algorithm, and fast Newton transversal filters but also the regularized recursive least squares algorithm |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2006.881225 |