An improved strain gradient plasticity formulation with energetic interfaces: theory and a fully implicit finite element formulation

A fully implicit backward-Euler implementation of a higher order strain gradient plasticity theory is presented. A tangent operator consistent with the numerical update procedure is given. The implemented theory is a dissipative bulk formulation with energetic contribution from internal interface to...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics Vol. 51; no. 5; pp. 641 - 659
Main Authors: Dahlberg, Carl F. O., Faleskog, Jonas
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.05.2013
Springer
Springer Nature B.V
Subjects:
ISSN:0178-7675, 1432-0924, 1432-0924
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fully implicit backward-Euler implementation of a higher order strain gradient plasticity theory is presented. A tangent operator consistent with the numerical update procedure is given. The implemented theory is a dissipative bulk formulation with energetic contribution from internal interface to model the behavior of material interfaces at small length scales. The implementation is tested by solving some examples that specifically highlight the numerics and the effect of using the energetic interfaces as higher order boundary conditions. Specifically, it is demonstrated that the energetic interface formulation is able to mimic a wide range of plastic strain conditions at internal boundaries. It is also shown that delayed micro-hard conditions may arise under certain circumstances such that an interface at first offers little constraints on plastic flow, but with increasing plastic deformation will develop and become a barrier to dislocation motion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0178-7675
1432-0924
1432-0924
DOI:10.1007/s00466-012-0743-5