A Decision Support System for Crop Recommendation Using Machine Learning Classification Algorithms

Today, crop suggestions and necessary guidance have become a regular need for a farmer. Farmers generally depend on their local agriculture officers regarding this, and it may be difficult to obtain the right guidance at the right time. Nowadays, crop datasets are available on different websites in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture (Basel) Jg. 14; H. 8; S. 1256
Hauptverfasser: Senapaty, Murali Krishna, Ray, Abhishek, Padhy, Neelamadhab
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2024
Schlagworte:
ISSN:2077-0472, 2077-0472
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Today, crop suggestions and necessary guidance have become a regular need for a farmer. Farmers generally depend on their local agriculture officers regarding this, and it may be difficult to obtain the right guidance at the right time. Nowadays, crop datasets are available on different websites in the agriculture sector, and they play a crucial role in suggesting suitable crops. So, a decision support system that analyzes the crop dataset using machine learning techniques can assist farmers in making better choices regarding crop selections. The main objective of this research is to provide quick guidance to farmers with more accurate and effective crop recommendations by utilizing machine learning methods, global positioning system coordinates, and crop cloud data. Here, the recommendation can be more personalized, which enables the farmers to predict crops in their specific geographical context, taking into account factors like climate, soil composition, water availability, and local conditions. In this regard, an existing historical crop dataset that contains the state, district, year, area-wise production rate, crop name, and season was collected for 246,091 sample records from the Dataworld website, which holds data on 37 different crops from different areas of India. Also, for better analysis, a dataset was collected from the agriculture offices of the Rayagada, Koraput, and Gajapati districts in Odisha state, India. Both of these datasets were combined and stored using a Firebase cloud service. Thirteen different machine learning algorithms have been applied to the dataset to identify dependencies within the data. To facilitate this process, an Android application was developed using Android Studio (Electric Eel | 2023.1.1) Emulator (Version 32.1.14), Software Development Kit (SDK, Android SDK 33), and Tools. A model has been proposed that implements the SMOTE (Synthetic Minority Oversampling Technique) to balance the dataset, and then it allows for the implementation of 13 different classifiers, such as logistic regression, decision tree (DT), K-Nearest Neighbor (KNN), SVC (Support Vector Classifier), random forest (RF), Gradient Boost (GB), Bagged Tree, extreme gradient boosting (XGB classifier), Ada Boost Classifier, Cat Boost, HGB (Histogram-based Gradient Boosting), SGDC (Stochastic Gradient Descent), and MNB (Multinomial Naive Bayes) on the cloud dataset. It is observed that the performance of the SGDC method is 1.00 in accuracy, precision, recall, F1-score, and ROC AUC (Receiver Operating Characteristics–Area Under the Curve) and is 0.91 in sensitivity and 0.54 in specificity after applying the SMOTE. Overall, SGDC has a better performance compared to all other classifiers implemented in the predictions.
AbstractList Today, crop suggestions and necessary guidance have become a regular need for a farmer. Farmers generally depend on their local agriculture officers regarding this, and it may be difficult to obtain the right guidance at the right time. Nowadays, crop datasets are available on different websites in the agriculture sector, and they play a crucial role in suggesting suitable crops. So, a decision support system that analyzes the crop dataset using machine learning techniques can assist farmers in making better choices regarding crop selections. The main objective of this research is to provide quick guidance to farmers with more accurate and effective crop recommendations by utilizing machine learning methods, global positioning system coordinates, and crop cloud data. Here, the recommendation can be more personalized, which enables the farmers to predict crops in their specific geographical context, taking into account factors like climate, soil composition, water availability, and local conditions. In this regard, an existing historical crop dataset that contains the state, district, year, area-wise production rate, crop name, and season was collected for 246,091 sample records from the Dataworld website, which holds data on 37 different crops from different areas of India. Also, for better analysis, a dataset was collected from the agriculture offices of the Rayagada, Koraput, and Gajapati districts in Odisha state, India. Both of these datasets were combined and stored using a Firebase cloud service. Thirteen different machine learning algorithms have been applied to the dataset to identify dependencies within the data. To facilitate this process, an Android application was developed using Android Studio (Electric Eel | 2023.1.1) Emulator (Version 32.1.14), Software Development Kit (SDK, Android SDK 33), and Tools. A model has been proposed that implements the SMOTE (Synthetic Minority Oversampling Technique) to balance the dataset, and then it allows for the implementation of 13 different classifiers, such as logistic regression, decision tree (DT), K-Nearest Neighbor (KNN), SVC (Support Vector Classifier), random forest (RF), Gradient Boost (GB), Bagged Tree, extreme gradient boosting (XGB classifier), Ada Boost Classifier, Cat Boost, HGB (Histogram-based Gradient Boosting), SGDC (Stochastic Gradient Descent), and MNB (Multinomial Naive Bayes) on the cloud dataset. It is observed that the performance of the SGDC method is 1.00 in accuracy, precision, recall, F1-score, and ROC AUC (Receiver Operating Characteristics–Area Under the Curve) and is 0.91 in sensitivity and 0.54 in specificity after applying the SMOTE. Overall, SGDC has a better performance compared to all other classifiers implemented in the predictions.
Audience Academic
Author Senapaty, Murali Krishna
Ray, Abhishek
Padhy, Neelamadhab
Author_xml – sequence: 1
  givenname: Murali Krishna
  orcidid: 0000-0003-4529-6549
  surname: Senapaty
  fullname: Senapaty, Murali Krishna
– sequence: 2
  givenname: Abhishek
  surname: Ray
  fullname: Ray, Abhishek
– sequence: 3
  givenname: Neelamadhab
  orcidid: 0000-0001-7997-2336
  surname: Padhy
  fullname: Padhy, Neelamadhab
BookMark eNp9Uctq3DAUNSWFpmm-oBtDN91MKlmyHsth-khgSqFp1kKWrh0NtuRK8iJ_HzkOpYRSaSFxOI97OW-rMx88VNV7jK4IkeiTHqIzy5iXCJgigZuWvarOG8T5DlHenP31f1NdpnRC5UhMBGLnVbevP4NxyQVf3y7zHGKubx9ShqnuQ6wPMcz1TzBhmsBbnVfaXXJ-qL9rc-881EfQ0a_AYdQpud6ZjbUfhxBdvp_Su-p1r8cEl8_vRXX39cuvw_Xu-OPbzWF_3BnKUN5paQVw1nSdJR1hzAouraFCatkCogYjilvbmELQjPO208SyTiDTWESBI3JR3Wy-NuiTmqObdHxQQTv1BIQ4KB2zMyMoIkVvYE0ozlgI2csS0CHOTEcbg4vXx81rjuH3AimrySUD46g9hCUpglvCSUMEKdQPL6insERfNlUESS5Qw_E63NXGGnTJd74POWpTroXJmVJo7wq-F4hTRBlZJyCbwMSQUoT-z0YYqbV39Y_ei0q-UBmXnwopcW78r_YRXAy4mA
CitedBy_id crossref_primary_10_3390_su17125230
crossref_primary_10_1007_s43069_025_00434_z
crossref_primary_10_1016_j_compag_2025_109905
crossref_primary_10_1051_bioconf_202515104028
crossref_primary_10_1016_j_fcr_2025_109989
crossref_primary_10_3390_agriengineering7060170
crossref_primary_10_1016_j_procs_2025_02_072
crossref_primary_10_3390_app15010400
crossref_primary_10_3390_bdcc8110143
crossref_primary_10_54392_irjmt2525
Cites_doi 10.5194/isprs-archives-XLII-3-W6-477-2019
10.1371/journal.pone.0252402
10.3390/agronomy12010058
10.3390/agronomy9020087
10.4038/jmm.v10i1.45
10.1016/j.gltp.2021.08.060
10.1109/SoSE50414.2020.9130481
10.1109/WISNET.2019.8711808
10.1016/j.dajour.2022.100041
10.1016/j.kjs.2023.11.009
10.1109/ICTS52701.2021.9608436
10.1109/ICETCE48199.2020.9091741
10.3390/s18082674
10.1016/j.procs.2023.01.241
10.1016/j.jclepro.2022.133638
10.1109/ICCUBEA.2018.8697349
10.36227/techrxiv.23504496.v1
10.3389/frai.2023.1203546
10.1109/IEMENTech48150.2019.8981128
10.3390/s22166299
10.1016/j.heliyon.2023.e15245
10.1109/IDAACS.2011.6072702
10.1016/j.measen.2023.101002
10.1109/CVPRW63382.2024.00543
10.1109/TIAR.2015.7358549
10.1109/ICOEI.2018.8553720
10.30574/wjarr.2022.14.3.0581
10.1109/GeoInformatics.2011.5980847
10.1109/ICACCS51430.2021.9441736
10.1109/ICCMC51019.2021.9418351
10.3390/agronomy13041169
10.32628/CSEIT2173129
10.1109/RTEICT42901.2018.9012549
10.1007/s00521-023-09391-2
10.1080/2150704X.2014.889863
10.3390/rs14235978
10.1109/Agro-Geoinformatics.2018.8476124
10.1109/ACCESS.2023.3249205
10.1109/GHTC-SAS.2013.6629944
10.24018/ejai.2022.1.3.14
10.1016/j.compag.2023.107663
10.1109/ICICV50876.2021.9388479
10.3390/agriculture12070977
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture14081256
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database

AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_398fced879e041889f94c1b076cb42c1
A807404631
10_3390_agriculture14081256
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ID FETCH-LOGICAL-c460t-a9d8e762bbd3b366d879dc489a95e04c10415d2c2bba6775ba3d6b80c2d04e703
IEDL.DBID BENPR
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305845000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-0472
IngestDate Fri Oct 03 12:50:42 EDT 2025
Sun Nov 09 11:27:12 EST 2025
Mon Jun 30 13:21:32 EDT 2025
Tue Nov 04 18:27:54 EST 2025
Sat Nov 29 07:08:48 EST 2025
Tue Nov 18 21:58:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-a9d8e762bbd3b366d879dc489a95e04c10415d2c2bba6775ba3d6b80c2d04e703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4529-6549
0000-0001-7997-2336
OpenAccessLink https://www.proquest.com/docview/3097802710?pq-origsite=%requestingapplication%
PQID 3097802710
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_398fced879e041889f94c1b076cb42c1
proquest_miscellaneous_3153732383
proquest_journals_3097802710
gale_infotracacademiconefile_A807404631
crossref_primary_10_3390_agriculture14081256
crossref_citationtrail_10_3390_agriculture14081256
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shams (ref_63) 2024; 36
Pandey (ref_28) 2019; 42
Rajak (ref_22) 2017; 4
Olofintuyi (ref_59) 2023; 9
Bhatnagar (ref_37) 2022; 71
Kawakura (ref_49) 2022; 1
ref_14
Sharma (ref_31) 2023; 33
ref_13
ref_12
ref_11
ref_10
ref_52
Paudel (ref_55) 2023; 206
Kedlaya (ref_36) 2021; 2
ref_19
Apat (ref_53) 2023; 82
Rajakumaran (ref_57) 2024; 31
ref_17
Dubey (ref_34) 2023; 8
Ranaweera (ref_15) 2023; 10
Reyana (ref_38) 2023; 11
ref_61
ref_23
Ashoka (ref_46) 2022; 36
ref_66
ref_21
Sabrina (ref_54) 2022; 72
ref_65
Bondre (ref_16) 2019; 4
ref_20
ref_64
Raju (ref_58) 2024; 51
ref_62
Coulibaly (ref_51) 2022; 371
ref_27
Panigrahi (ref_24) 2023; 218
Kawakura (ref_47) 2022; 4
Reddy (ref_30) 2023; 14
Dhanavel (ref_29) 2023; 44
Gosai (ref_32) 2021; 7
Batchuluun (ref_56) 2022; 34
Bandaiaha (ref_60) 2022; 41
Garg (ref_25) 2023; 10
Eddaoudi (ref_39) 2023; 14
Bandara (ref_33) 2020; 975
Sonobe (ref_18) 2014; 5
ref_45
Ryo (ref_50) 2022; 6
ref_44
Islam (ref_40) 2023; 14
ref_42
ref_1
ref_3
Sundari (ref_35) 2022; 14
ref_2
Durai (ref_43) 2022; 3
ref_48
ref_9
ref_8
ref_5
ref_4
Shankar (ref_26) 2022; 9
ref_7
Bhuyan (ref_41) 2023; 15
ref_6
References_xml – volume: 10
  start-page: 498
  year: 2023
  ident: ref_25
  article-title: An effective crop recommendation method using machine learning techniques
  publication-title: Int. J. Adv. Technol. Eng. Explor.
– volume: 42
  start-page: 477
  year: 2019
  ident: ref_28
  article-title: Improved In-Season Crop Classification Performance Using Ensemble Learning Technique: A Case Study of Lekoda Insurance Unit, Ujjain, Madhya Pradesh
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-W6-477-2019
– ident: ref_64
  doi: 10.1371/journal.pone.0252402
– volume: 14
  start-page: 1062
  year: 2023
  ident: ref_30
  article-title: Optimizing Crop Forecasts: Leveraging Feature Selection and Ensemble Methods
  publication-title: Turk. J. Comput. Math. Educ. (TURCOMAT)
– volume: 82
  start-page: 558
  year: 2023
  ident: ref_53
  article-title: An Artificial Intelligence-based Crop Recommendation System using Machine Learning
  publication-title: J. Sci. Ind. Res. (JSIR)
– ident: ref_20
  doi: 10.3390/agronomy12010058
– ident: ref_61
  doi: 10.3390/agronomy9020087
– volume: 10
  start-page: 19
  year: 2023
  ident: ref_15
  article-title: Crop Price Prediction Using Machine Learning Approaches: Reference to the Sri Lankan Vegetable Market
  publication-title: J. Manag. Matters
  doi: 10.4038/jmm.v10i1.45
– volume: 2
  start-page: 294
  year: 2021
  ident: ref_36
  article-title: An efficient algorithm for predicting crop using historical data and pattern matching technique
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.08.060
– ident: ref_7
  doi: 10.1109/SoSE50414.2020.9130481
– ident: ref_8
  doi: 10.1109/WISNET.2019.8711808
– volume: 15
  start-page: 417
  year: 2023
  ident: ref_41
  article-title: Machine Learning-based Crop Recommendation System in Biswanath District of Assam
  publication-title: Biol. Forum Int. J.
– volume: 3
  start-page: 100041
  year: 2022
  ident: ref_43
  article-title: Smart farming using machine learning and deep learning techniques
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2022.100041
– volume: 51
  start-page: 100160
  year: 2024
  ident: ref_58
  article-title: CropCast: Harvesting the future with interfused machine learning and advanced stacking ensemble for precise crop prediction
  publication-title: Kuwait J. Sci.
  doi: 10.1016/j.kjs.2023.11.009
– ident: ref_62
  doi: 10.1109/ICTS52701.2021.9608436
– ident: ref_45
  doi: 10.1109/ICETCE48199.2020.9091741
– volume: 4
  start-page: 11
  year: 2022
  ident: ref_47
  article-title: Analyses of diverse agricultural worker data with explainable artificial intelligence: Xai based on shap, lime, and lightgbm
  publication-title: Eur. J. Agric. Food Sci.
– ident: ref_1
  doi: 10.3390/s18082674
– volume: 218
  start-page: 2684
  year: 2023
  ident: ref_24
  article-title: A machine learning-based comparative approach to predict the crop yield using supervised learning with regression models
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2023.01.241
– volume: 371
  start-page: 133638
  year: 2022
  ident: ref_51
  article-title: Explainable deep convolutional neural networks for insect pest recognition
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133638
– volume: 8
  start-page: 2059
  year: 2023
  ident: ref_34
  article-title: Crop Recommendation System for Madhya Pradesh Districts using Machine Learning
  publication-title: Int. J. Innov. Sci. Res. Technol.
– volume: 9
  start-page: 127
  year: 2022
  ident: ref_26
  article-title: Crops Prediction Based on Environmental Factors Using Machine Learning Algorithm
  publication-title: Cent. Dev. Econ. Stud.
– ident: ref_2
  doi: 10.1109/ICCUBEA.2018.8697349
– ident: ref_66
– volume: 6
  start-page: 257
  year: 2022
  ident: ref_50
  article-title: Explainable artificial intelligence and interpretable machine learning for agricultural data analysis
  publication-title: Artif. Intell. Agric.
– ident: ref_42
  doi: 10.36227/techrxiv.23504496.v1
– ident: ref_48
  doi: 10.3389/frai.2023.1203546
– ident: ref_12
  doi: 10.1109/IEMENTech48150.2019.8981128
– ident: ref_17
  doi: 10.3390/s22166299
– volume: 36
  start-page: 169
  year: 2022
  ident: ref_46
  article-title: IMLAPC: Interfused Machine Learning Approach for Prediction of Crops
  publication-title: Rev. D’intell. Artif.
– volume: 9
  start-page: E15245
  year: 2023
  ident: ref_59
  article-title: An ensemble deep learning approach for predicting cocoa yield
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15245
– ident: ref_11
  doi: 10.1109/IDAACS.2011.6072702
– volume: 31
  start-page: 101002
  year: 2024
  ident: ref_57
  article-title: Crop yield prediction using multi-attribute weighted tree-based Support Vector Classifier
  publication-title: Meas. Sens.
  doi: 10.1016/j.measen.2023.101002
– ident: ref_65
  doi: 10.1109/CVPRW63382.2024.00543
– volume: 71
  start-page: 626
  year: 2022
  ident: ref_37
  article-title: Agriculture Crop Recommendation System using Machine-Learning
  publication-title: Math. Stat. Eng. Appl.
– ident: ref_5
  doi: 10.1109/TIAR.2015.7358549
– volume: 41
  start-page: 476
  year: 2022
  ident: ref_60
  article-title: Classification of Fertiliser Type Based on Soil Minerals Using Voting Classification Over Decision Tree
  publication-title: Adv. Parallel Comput. Algorithms Tools Paradig.
– ident: ref_10
  doi: 10.1109/ICOEI.2018.8553720
– volume: 44
  start-page: 1126
  year: 2023
  ident: ref_29
  article-title: A Study on Variable Selections and Prediction for Crop Recommender System with Soil Nutrients Using Stochastic Model and Machine Learning Approaches
  publication-title: Tuijin Jishu/J. Propuls. Technol.
– volume: 14
  start-page: 452
  year: 2022
  ident: ref_35
  article-title: Crop recommendation and yield prediction using machine learning algorithms
  publication-title: World J. Adv. Res. Rev.
  doi: 10.30574/wjarr.2022.14.3.0581
– volume: 33
  start-page: 700
  year: 2023
  ident: ref_31
  article-title: Yield Prediction and Recommendation of Crops in the Northeastern Region Using Machine Learning Regression Models
  publication-title: Yuz. Yıl Univ. J. Agric. Sci.
– ident: ref_14
  doi: 10.1109/GeoInformatics.2011.5980847
– ident: ref_3
  doi: 10.1109/ICACCS51430.2021.9441736
– ident: ref_44
  doi: 10.1109/ICCMC51019.2021.9418351
– ident: ref_21
  doi: 10.3390/agronomy13041169
– volume: 7
  start-page: 558
  year: 2021
  ident: ref_32
  article-title: Crop recommendation system using machine learning
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
  doi: 10.32628/CSEIT2173129
– ident: ref_13
  doi: 10.1109/RTEICT42901.2018.9012549
– volume: 975
  start-page: 8887
  year: 2020
  ident: ref_33
  article-title: Crop recommendation system
  publication-title: Int. J. Comput. Appl.
– volume: 36
  start-page: 5695
  year: 2024
  ident: ref_63
  article-title: Enhancing crop recommendation systems with explainable artificial intelligence: A study on agricultural decision-making
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09391-2
– ident: ref_6
– volume: 34
  start-page: 10474
  year: 2022
  ident: ref_56
  article-title: Deep learning-based plant classification and crop disease classification by thermal camera
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 5
  start-page: 157
  year: 2014
  ident: ref_18
  article-title: Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2014.889863
– ident: ref_52
  doi: 10.3390/rs14235978
– volume: 4
  start-page: 371
  year: 2019
  ident: ref_16
  article-title: Prediction of crop yield and fertilizer recommendation using machine learning algorithms
  publication-title: Int. J. Eng. Appl. Sci. Technol.
– ident: ref_9
  doi: 10.1109/Agro-Geoinformatics.2018.8476124
– volume: 11
  start-page: 20795
  year: 2023
  ident: ref_38
  article-title: Accelerating Crop Yield: Multisensor Data Fusion and Machine Learning for Agriculture Text Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3249205
– ident: ref_4
  doi: 10.1109/GHTC-SAS.2013.6629944
– ident: ref_19
– volume: 14
  start-page: 100880
  year: 2023
  ident: ref_40
  article-title: Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation
  publication-title: J. Agric. Food Res.
– volume: 1
  start-page: 27
  year: 2022
  ident: ref_49
  article-title: Adaptations of Explainable Artificial Intelligence (XAI) to Agricultural Data Models with ELI5, PDPbox, and Skater using Diverse Agricultural Worker Data
  publication-title: Eur. J. Artif. Intell. Mach. Learn.
  doi: 10.24018/ejai.2022.1.3.14
– volume: 206
  start-page: 107663
  year: 2023
  ident: ref_55
  article-title: Interpretability of deep learning models for crop yield forecasting
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107663
– volume: 4
  start-page: 950
  year: 2017
  ident: ref_22
  article-title: Crop recommendation system to maximize crop yield using machine learning technique
  publication-title: Int. Res. J. Eng. Technol.
– ident: ref_23
  doi: 10.1109/ICICV50876.2021.9388479
– ident: ref_27
  doi: 10.3390/agriculture12070977
– volume: 14
  start-page: 199
  year: 2023
  ident: ref_39
  article-title: A Predictive Approach to Improving Agricultural Productivity in Morocco through Crop Recommendations
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 72
  start-page: 3777
  year: 2022
  ident: ref_54
  article-title: An interpretable artificial intelligence based smart agriculture system
  publication-title: Comput. Mater. Contin.
SSID ssj0000913806
Score 2.4567482
Snippet Today, crop suggestions and necessary guidance have become a regular need for a farmer. Farmers generally depend on their local agriculture officers regarding...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1256
SubjectTerms accuracy rate
Agricultural equipment
agricultural industry
Agricultural production
Agriculture
Algorithms
Analysis
climate
Climate prediction
computer software
Crop production
crop recommendation
Crops
Data analysis
data collection
Data mining
Datasets
Decision making
Decision support systems
Decision trees
Farmers
Fertilizers
global positioning system
Global positioning systems
GPS
Historic districts
India
Internet
Learning algorithms
Machine learning
Positioning devices (machinery)
precision agriculture
Profits
regression analysis
Sensors
Software development tools
soil composition
Soil water
Water availability
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJSMhsRDhxKljj-ElBkAMILFZfrUg0Ralhd_PnWNKBx4La3KJnHv5PuX8HSGHQkENUEIgMesBoOSMZzI3IROl7YL_BF_ZSJl_Xd3eysdHdTcz6gt7wlp64FZxJ1zJngteViqwMpdS9VTpcgvw29mycBH4sErNgKmYg1XOJRMtzRAHXH9i-k0iswiAKWBbw5HVM1tRZOz_KS_HzeZyhSynKpHW7epWyVwYrpGl-uvl68TW9DzNx6E4mhPKaNrSj1OoQ-lZM3qliC0Hg5DmJtHYHkBvYvtkoIlZtU_jXEzsGGql6pf-qHmePA3GG-Th8uL-7CpLAxMyVwo2yYzyMkB2s9Zzy4VArXlXSmVUF7TncjyP7wsHAkZUVdca7oWVzBWelQFif5PMD0fDsEVoj4NIYQzmA6jpjHHMShOsAKOLXmU6pPjUnXaJTRyHWrxoQBWocP2NwjvkePrQa0um8bv4KRplKopM2PEC-IdO_qH_8o8OOUKTaoxXWKAz6dgBfCYyX-ka2YCQNg0kdz-trlMgjzXHcy4A3XPWIQfT2xCC-F_FDMPoDWRg16g41D58-z9WvEMWC6ic2i7DXTI_ad7CHllw75PncbMf_fwDJiUEwg
  priority: 102
  providerName: Directory of Open Access Journals
Title A Decision Support System for Crop Recommendation Using Machine Learning Classification Algorithms
URI https://www.proquest.com/docview/3097802710
https://www.proquest.com/docview/3153732383
https://doaj.org/article/398fced879e041889f94c1b076cb42c1
Volume 14
WOSCitedRecordID wos001305845000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M0K
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKywEOtOUhlj5kpEpciOrEWcc-VelLRbCrFQKpnCy_dkHqbpbslt_PjOPdcqC99JJDMonseGY8Y4-_j5AjoSAGKMGQmPWQoOSMZzI3IROl7YP-BF_ZCJn_pRoO5fW1GqUFt0Uqq1z5xOiofeNwjfyY44EDyKFydjL_nSFrFO6uJgqNJ2QLkcpAz7dOL4ajr-tVFkS9lEx0cEMc8vtjM2kTqEWA3AKmN6Su_mdKisj99_nnOOlcbj-2uTvkRQo3ad3pxy7ZCLOX5Hl917pXxNb0PBHtUOT4hHicdjjmFAJaetY2c4pJ6nQaEgETjXUGdBDrMANNEK0TGgk2sfSok6pvJtCi5c_p4jX5fnnx7ewqS8wLmSsFW2ZGeRnATVrrueVCeFkp70qpjOoHVrocD_b7woGAEVXVt4Z7YSVzhWdlACfyhmzOmll4S-iYg0hhDDoWCA6NccxKE6wA7RHjyvRIsfr52iVYcmTHuNGQnuCI6f-MWI98XL8071A5HhY_xVFdiyKkdrzRtBOdLFRzJccuYE-hh7mUaqygo5ZVwtmycHmPfECd0Gj40EBn0vkF6CZCaOkaYYUQfw0k91c6oZNHWOg7heiR9-vHYMu4QWNmobkFGZh-Kg5BFH_38Cf2yLMCgquuEHGfbC7b23BAnro_y1-L9jAZwWFcX4DrgH2Ge6NPg9GPvwWrF8I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYECiwSiAtW115nvT4gZFqqRk2iHIpUTu6-EpCaOCQpiD_Fb2TGXqccoLceuCYTK7P-dh727PcBvJI51gApbiRuHDYoMReRirWPZGp6iB_vMlNT5g-y0UidnOTjLfjVnoWhsco2JtaB2lWWnpHvCjpwgD1UzN8vvkWkGkVvV1sJjQYWR_7nD2zZVu_6-3h_XyfJwcfjvcMoqApENpV8HencKY8hwBgnjJDSqSx3NlW5znuepzamQ-susWigZZb1jBZOGsVt4njqcYPgda_Bdkpg78D2uD8cf9481SGWTcVlQ28kRM539XQZSDQ89jKYTkkq-48UWCsF_Csf1Enu4M7_tjx34XYop1nR4P8ebPn5fbhVXKzGAzAF2w9CQow0TLHfYA1PO8OCne0tqwWjJnw280FgitVzFGxYz5l6Fihop6wWEKXRqsaqOJviCqy_zFYP4dOVOPkIOvNq7h8Dmwg0SbSmwInFr9aWG6W9kbg75CTTXUjam13aQLtO6h9nJbZfhJDyLwjpwtvNjxYN68jl5h8IRRtTogyvP6iW0zJEoFLkamI9eYoexkrlkxwdNTyT1qSJjbvwhjBYUmDDP2h1OJ-BbhJFWFkQbRLxy6HlTovBMkS8VXkBwC683HyNsYpeQOm5r87RBtNrJrBIFE8uv8QLuHF4PByUg_7o6CncTLCQbIYud6CzXp77Z3Ddfl9_XS2fhw3I4PSqQf0bqm5xfA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I0IFFgkEBesrL3Oen1AyDRERG2jHEAqJ3d3vQ5ITRycFMRf49cxY69TDtBbD1yTiZVdv_myZ98DeCFTrAFidCRuCmxQQi4CFWoXyNgMET-uSExDmX-YTKfq-Did7cCv7iwMjVV2MbEJ1EVl6Rn5QNCBA-yhQj4o_VjEbDR-u_oWkIIUvWnt5DRaiBy4nz-wfVu_mYzwXr-MovH7j_sfAq8wENhY8k2g00I5DAfGFMIIKQuVpIWNVarToeOxDekAexFZNNAySYZGi0IaxW1U8Nihs-B1r8AuluRx1IPd2eRo9nn7hIcYNxWXLdWRECkf6HntCTUc9jWYWkk2-4902KgG_Cs3NAlvfOt_3qrbcNOX2Sxr_eIO7LjlXbiRne_MPTAZG3mBIUbaptiHsJa_nWEhz_brasWoOV8snBeeYs18BTtq5k8d89S0c9YIi9LIVWuVnc5xBzZfFuv78OlSFvkAestq6R4CKwWaRFpTQMWiWGvLjdLOSPQaWSa6D1F343Pr6dhJFeQ0x7aM0JL_BS19eL390aplI7nY_B0hamtKVOLNB1U9z31kykWqSutopbjCUKm0THGhhifSmjiyYR9eER5zCnj4B6325zZwmUQdlmdEp0S8c2i51-Ex95FwnZ-DsQ_Pt19jDKMXU3rpqjO0wbSbCCwexaOLL_EMriGS88PJ9OAxXI-wvmxnMfegt6nP3BO4ar9vvq7rp94XGZxcNqZ_A3Msejw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Decision+Support+System+for+Crop+Recommendation+Using+Machine+Learning+Classification+Algorithms&rft.jtitle=Agriculture+%28Basel%29&rft.au=Senapaty%2C+Murali+Krishna&rft.au=Ray%2C+Abhishek&rft.au=Padhy%2C+Neelamadhab&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=14&rft.issue=8&rft.spage=1256&rft_id=info:doi/10.3390%2Fagriculture14081256&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon