Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control

The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with cha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent & robotic systems Ročník 93; číslo 1-2; s. 227 - 243
Hlavní autoři: Dentler, Jan, Rosalie, Martin, Danoy, Grégoire, Bouvry, Pascal, Kannan, Somasundar, Olivares-Mendez, Miguel A., Voos, Holger
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.02.2019
Springer
Springer Nature B.V
Springer Verlag
Témata:
ISSN:0921-0296, 1573-0409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The recent development of compact and economic small Unmanned Aerial Vehicles (UAVs) permits the development of new UAV swarm applications. In order to enhance the area coverage of such UAV swarms, a novel mobility model has been presented in previous work, combining an Ant Colony algorithm with chaotic dynamics (CACOC). This work is extending CACOC by a Collision Avoidance (CA) mechanism and testing its efficiency in terms of area coverage by the UAV swarm. For this purpose, CACOC is used to compute UAV target waypoints which are tracked by model predictively controlled UAVs. The UAVs are represented by realistic motion models within the virtual robot experimentation platform (V-Rep). This environment is used to evaluate the performance of the proposed CACOC with CA algorithm in an area exploration scenario with 3 UAVs. Finally, its performance is analyzed using metrics.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-018-0822-8