HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment

On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 15; H. 2; S. 487
Hauptverfasser: Guo, Xiaomin, Cao, Yongxing, Zhou, Jian, Huang, Yuanxian, Li, Bijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2023
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm is deeply optimized through the prior information of the CR-Map to improve the convergence rate and solve the problem of poor stability in campus environments. Three experiments were designed to verify the efficiency and stability of our approach. The results show that the sampling efficiency of our algorithm is four times higher than that of the Gaussian distribution method. The average convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm. In terms of algorithm efficiency, the average computation time of the proposed algorithm is only 15.98 ms, which is much better than that of the three compared algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15020487