HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment

On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 15; číslo 2; s. 487
Hlavní autoři: Guo, Xiaomin, Cao, Yongxing, Zhou, Jian, Huang, Yuanxian, Li, Bijun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm is deeply optimized through the prior information of the CR-Map to improve the convergence rate and solve the problem of poor stability in campus environments. Three experiments were designed to verify the efficiency and stability of our approach. The results show that the sampling efficiency of our algorithm is four times higher than that of the Gaussian distribution method. The average convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm. In terms of algorithm efficiency, the average computation time of the proposed algorithm is only 15.98 ms, which is much better than that of the three compared algorithms.
AbstractList On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm is deeply optimized through the prior information of the CR-Map to improve the convergence rate and solve the problem of poor stability in campus environments. Three experiments were designed to verify the efficiency and stability of our approach. The results show that the sampling efficiency of our algorithm is four times higher than that of the Gaussian distribution method. The average convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm. In terms of algorithm efficiency, the average computation time of the proposed algorithm is only 15.98 ms, which is much better than that of the three compared algorithms.
Author Cao, Yongxing
Zhou, Jian
Guo, Xiaomin
Huang, Yuanxian
Li, Bijun
Author_xml – sequence: 1
  givenname: Xiaomin
  orcidid: 0000-0001-9499-0866
  surname: Guo
  fullname: Guo, Xiaomin
– sequence: 2
  givenname: Yongxing
  orcidid: 0000-0003-4307-1805
  surname: Cao
  fullname: Cao, Yongxing
– sequence: 3
  givenname: Jian
  orcidid: 0000-0001-6707-6542
  surname: Zhou
  fullname: Zhou, Jian
– sequence: 4
  givenname: Yuanxian
  surname: Huang
  fullname: Huang, Yuanxian
– sequence: 5
  givenname: Bijun
  orcidid: 0000-0001-7180-7627
  surname: Li
  fullname: Li, Bijun
BookMark eNptkU1rGzEQhpeSQtM0l_4CQS-lsM3oc3d7M3YSB2JaQnoWWn3YMruSK2kD_fdd16UNoXOZYXjmZWbet9VZiMFW1XsMnynt4CplzIEAa5tX1TmBhtSMdOTsWf2musx5D3NQijtg59VuvdrUDw-PX9AC3ahc0HpVb9Shvp28sQZtYvExoG-DCsGHLVoM25h82Y3IxYQWU4khjnHKaJX80xHwAZWdRUs1HubudXjyKYbRhvKueu3UkO3ln3xRfb-5flyu6_uvt3fLxX2tmYBStw3tnRMYc6s4MZ3h1BDOGCjHNVctJoo74XqDbe8I6JbqzigiHCektz3Qi-rupGui2stD8qNKP2VUXv5uxLSVKhWvBys1NVRoRRsBLcOcdW3HFIeux852lNNZ6-NJ65Dij8nmIkeftR3mb9j5aEmBAWuEoM2MfniB7uOUwnypJI1oKAChZKY-nSidYs7Jur8LYpBHD-U_D2cYXsDaF3X0oyTlh_-N_AKkD514
CitedBy_id crossref_primary_10_3390_rs15051210
crossref_primary_10_3390_rs15215130
crossref_primary_10_1016_j_jag_2023_103337
crossref_primary_10_1109_TITS_2023_3292033
crossref_primary_10_3390_ijgi13030104
crossref_primary_10_3390_s25041206
crossref_primary_10_1016_j_robot_2023_104605
crossref_primary_10_3390_rs16152751
Cites_doi 10.1177/0278364911406761
10.1007/BF01386390
10.20944/preprints202206.0390.v1
10.1109/TIV.2021.3123341
10.1109/TITS.2022.3147845
10.1007/978-3-319-67361-5_29
10.3390/rs14225847
10.1146/annurev-control-061920-093753
10.3390/en12122342
10.1109/ICMA49215.2020.9233539
10.1007/s13198-021-01255-z
10.3390/rs12162607
10.1109/ACCESS.2019.2928846
10.1109/TMECH.2018.2821767
10.1109/TSSC.1968.300136
10.1109/IROS.2011.6048409
10.5772/61391
10.1109/ROBOT.1991.131810
10.1109/IVS.2017.7995816
10.3390/vehicles3030027
10.1109/TIV.2016.2578706
10.1146/annurev-control-060117-105157
10.3390/rs14225881
10.1109/ACCESS.2021.3070054
10.1109/ICMA.2013.6617971
10.1109/ICRA.2012.6225177
10.1109/TRO.2016.2539377
10.1016/j.eswa.2020.114541
10.1016/j.eswa.2022.119264
10.1109/AEMCSE51986.2021.00210
10.1109/MC.2020.2970924
10.1002/rob.22107
10.1007/s11063-021-10536-4
10.1109/ICCAR.2017.7942654
10.1177/0954407020959741
10.1177/0278364909359210
10.1109/TCST.2008.2012116
10.1109/TVT.2020.3014628
10.1155/2021/6669728
10.1177/02783640122067453
10.15607/RSS.2010.VI.034
10.1109/IVS.2011.5940562
10.3390/ijgi8090416
10.1177/02783649922067753
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs15020487
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c3d36ca3760841549894a509b1fe9353
10_3390_rs15020487
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c460t-873bff6115ea52d9d53d25440af5c5a812a5f6fbd1ebf20c83c9da26f522beb03
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:45:59 EDT 2025
Sun Nov 09 10:32:04 EST 2025
Fri Jul 25 09:31:29 EDT 2025
Sat Nov 29 07:13:54 EST 2025
Tue Nov 18 22:29:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-873bff6115ea52d9d53d25440af5c5a812a5f6fbd1ebf20c83c9da26f522beb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4307-1805
0000-0001-9499-0866
0000-0001-6707-6542
0000-0001-7180-7627
OpenAccessLink https://www.proquest.com/docview/2767300232?pq-origsite=%requestingapplication%
PQID 2767300232
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c3d36ca3760841549894a509b1fe9353
proquest_miscellaneous_3040476637
proquest_journals_2767300232
crossref_primary_10_3390_rs15020487
crossref_citationtrail_10_3390_rs15020487
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_10
Latombe (ref_11) 1999; 18
Hart (ref_25) 1968; 4
ref_51
Wang (ref_20) 2021; 170
ref_18
Salzman (ref_40) 2016; 32
Shan (ref_9) 2020; 69
Wang (ref_14) 2022; 39
Min (ref_27) 2021; 235
Gammell (ref_39) 2021; 4
Li (ref_33) 2021; 7
Gan (ref_43) 2021; 53
Dolgov (ref_15) 2010; 29
ref_22
Wu (ref_13) 2021; 2021
Kathib (ref_26) 1986; 5
Ge (ref_46) 2021; 2021
Schwarting (ref_1) 2018; 1
Li (ref_12) 2020; 53
ref_36
Karaman (ref_19) 2011; 30
ref_32
Shan (ref_52) 2015; 12
Paden (ref_17) 2016; 1
ref_30
Tang (ref_28) 2021; 9
ref_38
ref_37
Chen (ref_21) 2018; 23
Dijkstra (ref_24) 1959; 1
Xinyu (ref_31) 2019; 7
Zuo (ref_23) 2022; 215
Kuwata (ref_35) 2009; 17
ref_47
LaValle (ref_34) 2001; 20
ref_45
ref_44
ref_42
ref_41
ref_3
ref_2
Karur (ref_16) 2021; 3
ref_49
ref_48
ref_8
ref_5
ref_4
Dolgov (ref_29) 2008; 1001
ref_7
ref_6
References_xml – volume: 30
  start-page: 846
  year: 2011
  ident: ref_19
  article-title: Sampling-based algorithms for optimal motion planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364911406761
– volume: 1
  start-page: 269
  year: 1959
  ident: ref_24
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– ident: ref_6
  doi: 10.20944/preprints202206.0390.v1
– ident: ref_51
– volume: 7
  start-page: 263
  year: 2021
  ident: ref_33
  article-title: An Optimization-based Path Planning Approach for Autonomous Vehicles using dynEFWA-Artificial Potential Field
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2021.3123341
– volume: 2021
  start-page: 5546581
  year: 2021
  ident: ref_13
  article-title: Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous Unmanned Ground Vehicles
  publication-title: Math. Probl. Eng.
– ident: ref_4
  doi: 10.1109/TITS.2022.3147845
– ident: ref_41
  doi: 10.1007/978-3-319-67361-5_29
– ident: ref_42
– ident: ref_5
  doi: 10.3390/rs14225847
– volume: 1001
  start-page: 18
  year: 2008
  ident: ref_29
  article-title: Practical search techniques in path planning for autonomous driving
  publication-title: Ann. Arbor.
– volume: 4
  start-page: 295
  year: 2021
  ident: ref_39
  article-title: Asymptotically optimal sampling-based motion planning methods
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-061920-093753
– ident: ref_32
  doi: 10.3390/en12122342
– ident: ref_48
  doi: 10.1109/ICMA49215.2020.9233539
– ident: ref_45
  doi: 10.1007/s13198-021-01255-z
– ident: ref_7
  doi: 10.3390/rs12162607
– volume: 7
  start-page: 95046
  year: 2019
  ident: ref_31
  article-title: Bidirectional potential guided rrt for motion planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928846
– volume: 23
  start-page: 2568
  year: 2018
  ident: ref_21
  article-title: A fast and efficient double-tree RRT-like sampling-based planner applying on mobile robotic systems
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2018.2821767
– ident: ref_10
– volume: 4
  start-page: 100
  year: 1968
  ident: ref_25
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– ident: ref_36
  doi: 10.1109/IROS.2011.6048409
– volume: 12
  start-page: 134
  year: 2015
  ident: ref_52
  article-title: CF-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.5772/61391
– ident: ref_30
  doi: 10.1109/ROBOT.1991.131810
– ident: ref_50
  doi: 10.1109/IVS.2017.7995816
– volume: 3
  start-page: 448
  year: 2021
  ident: ref_16
  article-title: A survey of path planning algorithms for mobile robots
  publication-title: Vehicles
  doi: 10.3390/vehicles3030027
– volume: 1
  start-page: 33
  year: 2016
  ident: ref_17
  article-title: A survey of motion planning and control techniques for self-driving urban vehicles
  publication-title: IEEE Trans. Intell. Veh.
  doi: 10.1109/TIV.2016.2578706
– volume: 1
  start-page: 187
  year: 2018
  ident: ref_1
  article-title: Planning and decision-making for autonomous vehicles
  publication-title: Annu. Rev. Control. Robot. Auton. Syst.
  doi: 10.1146/annurev-control-060117-105157
– ident: ref_8
  doi: 10.3390/rs14225881
– volume: 9
  start-page: 59196
  year: 2021
  ident: ref_28
  article-title: Geometric A-star algorithm. An improved A-star algorithm for AGV path planning in a port environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070054
– ident: ref_47
  doi: 10.1109/ICMA.2013.6617971
– ident: ref_37
  doi: 10.1109/ICRA.2012.6225177
– volume: 32
  start-page: 473
  year: 2016
  ident: ref_40
  article-title: Asymptotically near-optimal RRT for fast, high-quality motion planning
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2016.2539377
– volume: 170
  start-page: 114541
  year: 2021
  ident: ref_20
  article-title: Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114541
– volume: 215
  start-page: 119264
  year: 2022
  ident: ref_23
  article-title: Real-time Global Action Planning for Unmanned Ground Vehicle Exploration in Three-dimensional Spaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119264
– ident: ref_49
  doi: 10.1109/AEMCSE51986.2021.00210
– volume: 53
  start-page: 26
  year: 2020
  ident: ref_12
  article-title: Autonomous last-mile delivery vehicles in complex traffic environments
  publication-title: Computer
  doi: 10.1109/MC.2020.2970924
– ident: ref_18
– volume: 39
  start-page: 1258
  year: 2022
  ident: ref_14
  article-title: Motion planning in complex urban environments: An industrial application on autonomous last-mile delivery vehicles
  publication-title: J. Field Robot.
  doi: 10.1002/rob.22107
– volume: 53
  start-page: 3011
  year: 2021
  ident: ref_43
  article-title: Research on Robot Motion Planning Based on RRT Algorithm with Nonholonomic Constraints
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-021-10536-4
– volume: 5
  start-page: 490
  year: 1986
  ident: ref_26
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
  publication-title: Int. J. Robot. Res.
– ident: ref_44
  doi: 10.1109/ICCAR.2017.7942654
– volume: 235
  start-page: 513
  year: 2021
  ident: ref_27
  article-title: Autonomous driving path planning algorithm based on improved A algorithm in unstructured environment
  publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
  doi: 10.1177/0954407020959741
– ident: ref_2
– volume: 29
  start-page: 485
  year: 2010
  ident: ref_15
  article-title: Path planning for autonomous vehicles in unknown semi-structured environments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364909359210
– volume: 17
  start-page: 1105
  year: 2009
  ident: ref_35
  article-title: Real-time motion planning with applications to autonomous urban driving
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2008.2012116
– volume: 69
  start-page: 10581
  year: 2020
  ident: ref_9
  article-title: A reinforcement learning-based adaptive path tracking approach for autonomous driving
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3014628
– volume: 2021
  start-page: 6669728
  year: 2021
  ident: ref_46
  article-title: Improved Bidirectional RRT Path Planning Method for Smart Vehicle
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/6669728
– volume: 20
  start-page: 378
  year: 2001
  ident: ref_34
  article-title: Randomized kinodynamic planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783640122067453
– ident: ref_38
  doi: 10.15607/RSS.2010.VI.034
– ident: ref_3
  doi: 10.1109/IVS.2011.5940562
– ident: ref_22
  doi: 10.3390/ijgi8090416
– volume: 18
  start-page: 1119
  year: 1999
  ident: ref_11
  article-title: Motion planning: A journey of robots, molecules, digital actors, and other artifacts
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649922067753
SSID ssj0000331904
Score 2.395863
Snippet On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 487
SubjectTerms algorithm efficiency
Algorithms
autonomous driving
Autonomous vehicles
College campuses
Constraint modelling
Convergence
Efficiency
HD-Map
Heuristic
Motion planning
Normal distribution
Optimization
risk
risk assessment
Roads & highways
Sampling
sampling-based algorithm
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlBNpLSJqUunWKSnLJQWS90uqRm1vb9aE2wbiQ26JnvZBsjL0O5N9ntLt2UlroJVdJBzEazXyjx_chdC6l15RJRRyVjjCXOCKDcEQ45j3zPWNszTP7U0yn8uZGXb-Q-opvwhp64MZwl5Y6yq2Obzcki3xiUjENWc70glc0q3k-E6FeFFN1DKbgWglr-Egp1PWXqzVAn8hSK_7IQDVR_19xuE4uo0N00KJC3G9mc4Te-PI9etsKlC8ej9FiPJiQ2Wx-hft4pNcVHg_IRC_Jj03hvMOTWosHbxWIcP_29z1U_Ys7DJgU9zdV_LoANT4erIp4goCLEgPyw_HmAVqHz7_dTtCv0XD-fUxakQRiGU8qiGbUhMAB2HmdpU65jLpIO5bokNlMQ_7WWeDBuJ43IU2spFY5nfIAwMt4k9APaK-8L_1HhD1lsDqCpjTjTBmquHJWcmPjOZFNbQddbA2X25ZBPApZ3OZQSUQj589G7qCz3dhlw5vxz1Hfov13IyLXdd0AHpC3HpD_zwM6qLtdvbzdgOs8FTwy8QNe7KCvu27YOvE-RJceTJ5TCGBMAOQSn15jHp_Ru6hF35zPdNFetdr4U7RvH6pivfpS--cTzmjnnw
  priority: 102
  providerName: Directory of Open Access Journals
Title HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment
URI https://www.proquest.com/docview/2767300232
https://www.proquest.com/docview/3040476637
https://doaj.org/article/c3d36ca3760841549894a509b1fe9353
Volume 15
WOSCitedRecordID wos000925445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgQ4ILvxGFrTKCCwdraewkDpepoy1FolVUhjS4RP65VhppSVIkLvztey9NW00gLlx8sC0n8rOfPz_b30fIGymd4kKmzHJpmbCBZdInliVWOCdcT2vT8Mx-SqZTeXGRZm3ArWqvVW59YuOo7dJgjPwkTGKkVgcAcLr6wVA1Ck9XWwmN2-QQWRJ6zdW9z7sYS8BhgAViw0rKYXd_UlYAgJCrNrmxDjV0_X9442aJGT343597SO634JL2N6PhEbnlisfkbqtzPv_1hMzHgwmbzc7f0T4dqaqm4wGbqBX7sF5YZ-mkkfShWyEj2r-6hK_U8-8UoC3tr2t8AbFcV3RQLjAQQRcFBQBJ8QADcof7R3NPyZfR8Pz9mLVaC8yIOKjBKXLtfQz40KkotKmNuEX2skD5yEQKYICKfOy17Tntw8BIblKrwtgDftNOB_wZOSiWhXtOqOMCjJzwkEexSDVP49QaGWuD4SYTmg55u-353LRE5KiHcZXDhgStlO-t1CGvd3VXG_qNv9Y6QwPuaiBldpOxLC_zdgbmhlseG4WXgKRAYjqZCgVwSfe8S3nEO-Roa9u8ncdVvjdsh7zaFcMMxGMVVTjo8pyDHxQJILfkxb-beEnuoVj9JoBzRA7qcu2OyR3zs15UZZccng2n2azbRAW6zUDG9PcQ0iz6BuXZx0n29RpbHP1c
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHdJ44RtRGGAEPPAQLY2dxEZCqNCVVmuqairSeAqO7ayVRlqSFLQ_xW_kOh-tEIi3PfDqWJbsHF8fX9vnALzk3EjKuHA05dph2tUOT0PthJoZw0wvSVSlMzsJp1N-diZme_CzfQtjr1W2MbEK1HqlbI78yAsDK62OBODd-ptjXaPs6WproVHD4sRc_sAtW_F2PMD_-8rzhsfzDyOncRVwFAvcEqc_TdI0QCZkpO9poX2qrU6XK1Nf-RIXPOmnQZronklSz1WcKqGlF6TIVBKTuBTbvQb7zIK9A_uzcTT7vM3quBQh7bJaB5VS4R7lBVIuq44b_rbyVQYBf8T_alEb3vrfhuM23GzoM-nXeL8Deya7CweNk_vi8h4sRoPIOT2dvyF9MpRFSUYDJ5Jr5-NmqY0mUWVaRFqrJtK_OMdelYuvBMk76W9K-8ZjtSnIIF_aVAtZZgQpMrFHNFh6vHsWeB8-XUlHH0AnW2XmIRBDGcI4pB71AyYSKgKhFQ8SZRNqylNdeN3-6Vg1UuvW8eMixi2XRUW8Q0UXXmzrrmuBkb_Wem8Bs61hRcGrglV-HjcxJlZU00BJe82JMyu9xwWTSAiTXmoE9WkXDlssxU2kKuIdkLrwfPsZY4w9OJKZwSGPKUZ6FiI3DR_9u4lncDCaR5N4Mp6ePIYbHpbV6apD6JT5xjyB6-p7uSzyp83EIfDlqsH5C127VxY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQcCFN2qggBFw4GBls_bu2kgIBdKQqk0UVUWqeln8bCK1m7C7AfWv8esY7yMRAnHrgavXsmTv55nP4_E3CL3m3ErKuCCGckOYCQzhLjEkMcxaZntK6Upn9jCZTPjJiZhuoZ_tWxifVtnaxMpQm4X2MfJumMReWh0IQNc1aRHTwfDD8hvxFaT8TWtbTqOGyIG9_AHHt-L9_gD-9ZswHO4dfxqRpsIA0SwOSjAFVDkXAyuyMgqNMBE1XrMrkC7SkQTnJyMXO2V6Vrkw0JxqYWQYO2AtyqqAwrjX0PUEzpg-nXAana7jOwEFcAesVkSlVATdvADy5XVyk998YFUq4A9PULm34d3_eWHuoTsNqcb9ehfcR1s2e4BuNfXdZ5cP0Ww0GJOjo-N3uI-HsijxaEDGckk-r-bGGjyuShnhtoAT7p-fwazK2QUGSo_7q9K__FisCjzI5z4Ag-cZBuKM_cUNtO5tHgs-Ql-uZKKP0Xa2yOwOwpYyAHdCQxrFTCgqYmE0j5X2YTYd6g562_71VDcC7L4OyHkKBzGPkHSDkA56te67rGVH_trrowfPuoeXCq8aFvlZ2lieVFNDYy198hNnXpCPCyaBJqqes4JGtIN2W1yljf0q0g2oOujl-jNYHn-dJDMLS55SsP8sAcaaPPn3EC_QTUBkerg_OXiKbofQVMewdtF2ma_sM3RDfy_nRf682kEYfb1qZP4CCuFeeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDM-RRT%3A+A+Fast+HD-Map-Guided+Motion+Planning+Algorithm+for+Autonomous+Driving+in+the+Campus+Environment&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Guo%2C+Xiaomin&rft.au=Cao%2C+Yongxing&rft.au=Zhou%2C+Jian&rft.au=Huang%2C+Yuanxian&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=2&rft.spage=487&rft_id=info:doi/10.3390%2Frs15020487&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon