HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment
On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 15; číslo 2; s. 487 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2023
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm is deeply optimized through the prior information of the CR-Map to improve the convergence rate and solve the problem of poor stability in campus environments. Three experiments were designed to verify the efficiency and stability of our approach. The results show that the sampling efficiency of our algorithm is four times higher than that of the Gaussian distribution method. The average convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm. In terms of algorithm efficiency, the average computation time of the proposed algorithm is only 15.98 ms, which is much better than that of the three compared algorithms. |
|---|---|
| AbstractList | On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient motion planning algorithms. To solve this problem, HD-Map-guided sampling-based motion planning is a feasible research direction. We proposed a motion planning algorithm for autonomous vehicles on campus, called HD-Map-guided rapidly-exploring random tree (HDM-RRT). In our algorithm, A collision risk map (CR-Map) that quantifies the collision risk coefficient on the road is combined with the Gaussian distribution for sampling to improve the efficiency of algorithm. Then, the node optimization strategy of the algorithm is deeply optimized through the prior information of the CR-Map to improve the convergence rate and solve the problem of poor stability in campus environments. Three experiments were designed to verify the efficiency and stability of our approach. The results show that the sampling efficiency of our algorithm is four times higher than that of the Gaussian distribution method. The average convergence rate of the proposed algorithm outperforms the RRT* algorithm and DT-RRT* algorithm. In terms of algorithm efficiency, the average computation time of the proposed algorithm is only 15.98 ms, which is much better than that of the three compared algorithms. |
| Author | Cao, Yongxing Zhou, Jian Guo, Xiaomin Huang, Yuanxian Li, Bijun |
| Author_xml | – sequence: 1 givenname: Xiaomin orcidid: 0000-0001-9499-0866 surname: Guo fullname: Guo, Xiaomin – sequence: 2 givenname: Yongxing orcidid: 0000-0003-4307-1805 surname: Cao fullname: Cao, Yongxing – sequence: 3 givenname: Jian orcidid: 0000-0001-6707-6542 surname: Zhou fullname: Zhou, Jian – sequence: 4 givenname: Yuanxian surname: Huang fullname: Huang, Yuanxian – sequence: 5 givenname: Bijun orcidid: 0000-0001-7180-7627 surname: Li fullname: Li, Bijun |
| BookMark | eNptkU1rGzEQhpeSQtM0l_4CQS-lsM3oc3d7M3YSB2JaQnoWWn3YMruSK2kD_fdd16UNoXOZYXjmZWbet9VZiMFW1XsMnynt4CplzIEAa5tX1TmBhtSMdOTsWf2musx5D3NQijtg59VuvdrUDw-PX9AC3ahc0HpVb9Shvp28sQZtYvExoG-DCsGHLVoM25h82Y3IxYQWU4khjnHKaJX80xHwAZWdRUs1HubudXjyKYbRhvKueu3UkO3ln3xRfb-5flyu6_uvt3fLxX2tmYBStw3tnRMYc6s4MZ3h1BDOGCjHNVctJoo74XqDbe8I6JbqzigiHCektz3Qi-rupGui2stD8qNKP2VUXv5uxLSVKhWvBys1NVRoRRsBLcOcdW3HFIeux852lNNZ6-NJ65Dij8nmIkeftR3mb9j5aEmBAWuEoM2MfniB7uOUwnypJI1oKAChZKY-nSidYs7Jur8LYpBHD-U_D2cYXsDaF3X0oyTlh_-N_AKkD514 |
| CitedBy_id | crossref_primary_10_3390_rs15051210 crossref_primary_10_3390_rs15215130 crossref_primary_10_1016_j_jag_2023_103337 crossref_primary_10_1109_TITS_2023_3292033 crossref_primary_10_3390_ijgi13030104 crossref_primary_10_3390_s25041206 crossref_primary_10_1016_j_robot_2023_104605 crossref_primary_10_3390_rs16152751 |
| Cites_doi | 10.1177/0278364911406761 10.1007/BF01386390 10.20944/preprints202206.0390.v1 10.1109/TIV.2021.3123341 10.1109/TITS.2022.3147845 10.1007/978-3-319-67361-5_29 10.3390/rs14225847 10.1146/annurev-control-061920-093753 10.3390/en12122342 10.1109/ICMA49215.2020.9233539 10.1007/s13198-021-01255-z 10.3390/rs12162607 10.1109/ACCESS.2019.2928846 10.1109/TMECH.2018.2821767 10.1109/TSSC.1968.300136 10.1109/IROS.2011.6048409 10.5772/61391 10.1109/ROBOT.1991.131810 10.1109/IVS.2017.7995816 10.3390/vehicles3030027 10.1109/TIV.2016.2578706 10.1146/annurev-control-060117-105157 10.3390/rs14225881 10.1109/ACCESS.2021.3070054 10.1109/ICMA.2013.6617971 10.1109/ICRA.2012.6225177 10.1109/TRO.2016.2539377 10.1016/j.eswa.2020.114541 10.1016/j.eswa.2022.119264 10.1109/AEMCSE51986.2021.00210 10.1109/MC.2020.2970924 10.1002/rob.22107 10.1007/s11063-021-10536-4 10.1109/ICCAR.2017.7942654 10.1177/0954407020959741 10.1177/0278364909359210 10.1109/TCST.2008.2012116 10.1109/TVT.2020.3014628 10.1155/2021/6669728 10.1177/02783640122067453 10.15607/RSS.2010.VI.034 10.1109/IVS.2011.5940562 10.3390/ijgi8090416 10.1177/02783649922067753 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs15020487 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_c3d36ca3760841549894a509b1fe9353 10_3390_rs15020487 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c460t-873bff6115ea52d9d53d25440af5c5a812a5f6fbd1ebf20c83c9da26f522beb03 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:45:59 EDT 2025 Sun Nov 09 10:32:04 EST 2025 Fri Jul 25 09:31:29 EDT 2025 Sat Nov 29 07:13:54 EST 2025 Tue Nov 18 22:29:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-873bff6115ea52d9d53d25440af5c5a812a5f6fbd1ebf20c83c9da26f522beb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4307-1805 0000-0001-9499-0866 0000-0001-6707-6542 0000-0001-7180-7627 |
| OpenAccessLink | https://www.proquest.com/docview/2767300232?pq-origsite=%requestingapplication% |
| PQID | 2767300232 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3d36ca3760841549894a509b1fe9353 proquest_miscellaneous_3040476637 proquest_journals_2767300232 crossref_primary_10_3390_rs15020487 crossref_citationtrail_10_3390_rs15020487 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 ref_10 Latombe (ref_11) 1999; 18 Hart (ref_25) 1968; 4 ref_51 Wang (ref_20) 2021; 170 ref_18 Salzman (ref_40) 2016; 32 Shan (ref_9) 2020; 69 Wang (ref_14) 2022; 39 Min (ref_27) 2021; 235 Gammell (ref_39) 2021; 4 Li (ref_33) 2021; 7 Gan (ref_43) 2021; 53 Dolgov (ref_15) 2010; 29 ref_22 Wu (ref_13) 2021; 2021 Kathib (ref_26) 1986; 5 Ge (ref_46) 2021; 2021 Schwarting (ref_1) 2018; 1 Li (ref_12) 2020; 53 ref_36 Karaman (ref_19) 2011; 30 ref_32 Shan (ref_52) 2015; 12 Paden (ref_17) 2016; 1 ref_30 Tang (ref_28) 2021; 9 ref_38 ref_37 Chen (ref_21) 2018; 23 Dijkstra (ref_24) 1959; 1 Xinyu (ref_31) 2019; 7 Zuo (ref_23) 2022; 215 Kuwata (ref_35) 2009; 17 ref_47 LaValle (ref_34) 2001; 20 ref_45 ref_44 ref_42 ref_41 ref_3 ref_2 Karur (ref_16) 2021; 3 ref_49 ref_48 ref_8 ref_5 ref_4 Dolgov (ref_29) 2008; 1001 ref_7 ref_6 |
| References_xml | – volume: 30 start-page: 846 year: 2011 ident: ref_19 article-title: Sampling-based algorithms for optimal motion planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364911406761 – volume: 1 start-page: 269 year: 1959 ident: ref_24 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – ident: ref_6 doi: 10.20944/preprints202206.0390.v1 – ident: ref_51 – volume: 7 start-page: 263 year: 2021 ident: ref_33 article-title: An Optimization-based Path Planning Approach for Autonomous Vehicles using dynEFWA-Artificial Potential Field publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2021.3123341 – volume: 2021 start-page: 5546581 year: 2021 ident: ref_13 article-title: Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous Unmanned Ground Vehicles publication-title: Math. Probl. Eng. – ident: ref_4 doi: 10.1109/TITS.2022.3147845 – ident: ref_41 doi: 10.1007/978-3-319-67361-5_29 – ident: ref_42 – ident: ref_5 doi: 10.3390/rs14225847 – volume: 1001 start-page: 18 year: 2008 ident: ref_29 article-title: Practical search techniques in path planning for autonomous driving publication-title: Ann. Arbor. – volume: 4 start-page: 295 year: 2021 ident: ref_39 article-title: Asymptotically optimal sampling-based motion planning methods publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-061920-093753 – ident: ref_32 doi: 10.3390/en12122342 – ident: ref_48 doi: 10.1109/ICMA49215.2020.9233539 – ident: ref_45 doi: 10.1007/s13198-021-01255-z – ident: ref_7 doi: 10.3390/rs12162607 – volume: 7 start-page: 95046 year: 2019 ident: ref_31 article-title: Bidirectional potential guided rrt for motion planning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928846 – volume: 23 start-page: 2568 year: 2018 ident: ref_21 article-title: A fast and efficient double-tree RRT-like sampling-based planner applying on mobile robotic systems publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2018.2821767 – ident: ref_10 – volume: 4 start-page: 100 year: 1968 ident: ref_25 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: ref_36 doi: 10.1109/IROS.2011.6048409 – volume: 12 start-page: 134 year: 2015 ident: ref_52 article-title: CF-pursuit: A pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/61391 – ident: ref_30 doi: 10.1109/ROBOT.1991.131810 – ident: ref_50 doi: 10.1109/IVS.2017.7995816 – volume: 3 start-page: 448 year: 2021 ident: ref_16 article-title: A survey of path planning algorithms for mobile robots publication-title: Vehicles doi: 10.3390/vehicles3030027 – volume: 1 start-page: 33 year: 2016 ident: ref_17 article-title: A survey of motion planning and control techniques for self-driving urban vehicles publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2016.2578706 – volume: 1 start-page: 187 year: 2018 ident: ref_1 article-title: Planning and decision-making for autonomous vehicles publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-060117-105157 – ident: ref_8 doi: 10.3390/rs14225881 – volume: 9 start-page: 59196 year: 2021 ident: ref_28 article-title: Geometric A-star algorithm. An improved A-star algorithm for AGV path planning in a port environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070054 – ident: ref_47 doi: 10.1109/ICMA.2013.6617971 – ident: ref_37 doi: 10.1109/ICRA.2012.6225177 – volume: 32 start-page: 473 year: 2016 ident: ref_40 article-title: Asymptotically near-optimal RRT for fast, high-quality motion planning publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2016.2539377 – volume: 170 start-page: 114541 year: 2021 ident: ref_20 article-title: Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114541 – volume: 215 start-page: 119264 year: 2022 ident: ref_23 article-title: Real-time Global Action Planning for Unmanned Ground Vehicle Exploration in Three-dimensional Spaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119264 – ident: ref_49 doi: 10.1109/AEMCSE51986.2021.00210 – volume: 53 start-page: 26 year: 2020 ident: ref_12 article-title: Autonomous last-mile delivery vehicles in complex traffic environments publication-title: Computer doi: 10.1109/MC.2020.2970924 – ident: ref_18 – volume: 39 start-page: 1258 year: 2022 ident: ref_14 article-title: Motion planning in complex urban environments: An industrial application on autonomous last-mile delivery vehicles publication-title: J. Field Robot. doi: 10.1002/rob.22107 – volume: 53 start-page: 3011 year: 2021 ident: ref_43 article-title: Research on Robot Motion Planning Based on RRT Algorithm with Nonholonomic Constraints publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10536-4 – volume: 5 start-page: 490 year: 1986 ident: ref_26 article-title: Real-time obstacle avoidance for manipulators and mobile robots publication-title: Int. J. Robot. Res. – ident: ref_44 doi: 10.1109/ICCAR.2017.7942654 – volume: 235 start-page: 513 year: 2021 ident: ref_27 article-title: Autonomous driving path planning algorithm based on improved A algorithm in unstructured environment publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. doi: 10.1177/0954407020959741 – ident: ref_2 – volume: 29 start-page: 485 year: 2010 ident: ref_15 article-title: Path planning for autonomous vehicles in unknown semi-structured environments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364909359210 – volume: 17 start-page: 1105 year: 2009 ident: ref_35 article-title: Real-time motion planning with applications to autonomous urban driving publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2008.2012116 – volume: 69 start-page: 10581 year: 2020 ident: ref_9 article-title: A reinforcement learning-based adaptive path tracking approach for autonomous driving publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3014628 – volume: 2021 start-page: 6669728 year: 2021 ident: ref_46 article-title: Improved Bidirectional RRT Path Planning Method for Smart Vehicle publication-title: Math. Probl. Eng. doi: 10.1155/2021/6669728 – volume: 20 start-page: 378 year: 2001 ident: ref_34 article-title: Randomized kinodynamic planning publication-title: Int. J. Robot. Res. doi: 10.1177/02783640122067453 – ident: ref_38 doi: 10.15607/RSS.2010.VI.034 – ident: ref_3 doi: 10.1109/IVS.2011.5940562 – ident: ref_22 doi: 10.3390/ijgi8090416 – volume: 18 start-page: 1119 year: 1999 ident: ref_11 article-title: Motion planning: A journey of robots, molecules, digital actors, and other artifacts publication-title: Int. J. Robot. Res. doi: 10.1177/02783649922067753 |
| SSID | ssj0000331904 |
| Score | 2.395863 |
| Snippet | On campus, the complexity of the environment and the lack of regulatory constraints make it difficult to model the environment, resulting in less efficient... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 487 |
| SubjectTerms | algorithm efficiency Algorithms autonomous driving Autonomous vehicles College campuses Constraint modelling Convergence Efficiency HD-Map Heuristic Motion planning Normal distribution Optimization risk risk assessment Roads & highways Sampling sampling-based algorithm Stability |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlBNpLSJqUunWKSnLJQWS90uqRm1vb9aE2wbiQ26JnvZBsjL0O5N9ntLt2UlroJVdJBzEazXyjx_chdC6l15RJRRyVjjCXOCKDcEQ45j3zPWNszTP7U0yn8uZGXb-Q-opvwhp64MZwl5Y6yq2Obzcki3xiUjENWc70glc0q3k-E6FeFFN1DKbgWglr-Egp1PWXqzVAn8hSK_7IQDVR_19xuE4uo0N00KJC3G9mc4Te-PI9etsKlC8ej9FiPJiQ2Wx-hft4pNcVHg_IRC_Jj03hvMOTWosHbxWIcP_29z1U_Ys7DJgU9zdV_LoANT4erIp4goCLEgPyw_HmAVqHz7_dTtCv0XD-fUxakQRiGU8qiGbUhMAB2HmdpU65jLpIO5bokNlMQ_7WWeDBuJ43IU2spFY5nfIAwMt4k9APaK-8L_1HhD1lsDqCpjTjTBmquHJWcmPjOZFNbQddbA2X25ZBPApZ3OZQSUQj589G7qCz3dhlw5vxz1Hfov13IyLXdd0AHpC3HpD_zwM6qLtdvbzdgOs8FTwy8QNe7KCvu27YOvE-RJceTJ5TCGBMAOQSn15jHp_Ru6hF35zPdNFetdr4U7RvH6pivfpS--cTzmjnnw priority: 102 providerName: Directory of Open Access Journals |
| Title | HDM-RRT: A Fast HD-Map-Guided Motion Planning Algorithm for Autonomous Driving in the Campus Environment |
| URI | https://www.proquest.com/docview/2767300232 https://www.proquest.com/docview/3040476637 https://doaj.org/article/c3d36ca3760841549894a509b1fe9353 |
| Volume | 15 |
| WOSCitedRecordID | wos000925445200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgQ4ILvxGFrTKCCwdraewkDpepoy1FolVUhjS4RP65VhppSVIkLvztey9NW00gLlx8sC0n8rOfPz_b30fIGymd4kKmzHJpmbCBZdInliVWOCdcT2vT8Mx-SqZTeXGRZm3ArWqvVW59YuOo7dJgjPwkTGKkVgcAcLr6wVA1Ck9XWwmN2-QQWRJ6zdW9z7sYS8BhgAViw0rKYXd_UlYAgJCrNrmxDjV0_X9442aJGT343597SO634JL2N6PhEbnlisfkbqtzPv_1hMzHgwmbzc7f0T4dqaqm4wGbqBX7sF5YZ-mkkfShWyEj2r-6hK_U8-8UoC3tr2t8AbFcV3RQLjAQQRcFBQBJ8QADcof7R3NPyZfR8Pz9mLVaC8yIOKjBKXLtfQz40KkotKmNuEX2skD5yEQKYICKfOy17Tntw8BIblKrwtgDftNOB_wZOSiWhXtOqOMCjJzwkEexSDVP49QaGWuD4SYTmg55u-353LRE5KiHcZXDhgStlO-t1CGvd3VXG_qNv9Y6QwPuaiBldpOxLC_zdgbmhlseG4WXgKRAYjqZCgVwSfe8S3nEO-Roa9u8ncdVvjdsh7zaFcMMxGMVVTjo8pyDHxQJILfkxb-beEnuoVj9JoBzRA7qcu2OyR3zs15UZZccng2n2azbRAW6zUDG9PcQ0iz6BuXZx0n29RpbHP1c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHdJ44RtRGGAEPPAQLY2dxEZCqNCVVmuqairSeAqO7ayVRlqSFLQ_xW_kOh-tEIi3PfDqWJbsHF8fX9vnALzk3EjKuHA05dph2tUOT0PthJoZw0wvSVSlMzsJp1N-diZme_CzfQtjr1W2MbEK1HqlbI78yAsDK62OBODd-ptjXaPs6WproVHD4sRc_sAtW_F2PMD_-8rzhsfzDyOncRVwFAvcEqc_TdI0QCZkpO9poX2qrU6XK1Nf-RIXPOmnQZronklSz1WcKqGlF6TIVBKTuBTbvQb7zIK9A_uzcTT7vM3quBQh7bJaB5VS4R7lBVIuq44b_rbyVQYBf8T_alEb3vrfhuM23GzoM-nXeL8Deya7CweNk_vi8h4sRoPIOT2dvyF9MpRFSUYDJ5Jr5-NmqY0mUWVaRFqrJtK_OMdelYuvBMk76W9K-8ZjtSnIIF_aVAtZZgQpMrFHNFh6vHsWeB8-XUlHH0AnW2XmIRBDGcI4pB71AyYSKgKhFQ8SZRNqylNdeN3-6Vg1UuvW8eMixi2XRUW8Q0UXXmzrrmuBkb_Wem8Bs61hRcGrglV-HjcxJlZU00BJe82JMyu9xwWTSAiTXmoE9WkXDlssxU2kKuIdkLrwfPsZY4w9OJKZwSGPKUZ6FiI3DR_9u4lncDCaR5N4Mp6ePIYbHpbV6apD6JT5xjyB6-p7uSzyp83EIfDlqsH5C127VxY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKQcCFN2qggBFw4GBls_bu2kgIBdKQqk0UVUWqeln8bCK1m7C7AfWv8esY7yMRAnHrgavXsmTv55nP4_E3CL3m3ErKuCCGckOYCQzhLjEkMcxaZntK6Upn9jCZTPjJiZhuoZ_tWxifVtnaxMpQm4X2MfJumMReWh0IQNc1aRHTwfDD8hvxFaT8TWtbTqOGyIG9_AHHt-L9_gD-9ZswHO4dfxqRpsIA0SwOSjAFVDkXAyuyMgqNMBE1XrMrkC7SkQTnJyMXO2V6Vrkw0JxqYWQYO2AtyqqAwrjX0PUEzpg-nXAana7jOwEFcAesVkSlVATdvADy5XVyk998YFUq4A9PULm34d3_eWHuoTsNqcb9ehfcR1s2e4BuNfXdZ5cP0Ww0GJOjo-N3uI-HsijxaEDGckk-r-bGGjyuShnhtoAT7p-fwazK2QUGSo_7q9K__FisCjzI5z4Ag-cZBuKM_cUNtO5tHgs-Ql-uZKKP0Xa2yOwOwpYyAHdCQxrFTCgqYmE0j5X2YTYd6g562_71VDcC7L4OyHkKBzGPkHSDkA56te67rGVH_trrowfPuoeXCq8aFvlZ2lieVFNDYy198hNnXpCPCyaBJqqes4JGtIN2W1yljf0q0g2oOujl-jNYHn-dJDMLS55SsP8sAcaaPPn3EC_QTUBkerg_OXiKbofQVMewdtF2ma_sM3RDfy_nRf682kEYfb1qZP4CCuFeeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HDM-RRT%3A+A+Fast+HD-Map-Guided+Motion+Planning+Algorithm+for+Autonomous+Driving+in+the+Campus+Environment&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Guo%2C+Xiaomin&rft.au=Cao%2C+Yongxing&rft.au=Zhou%2C+Jian&rft.au=Huang%2C+Yuanxian&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=15&rft.issue=2&rft.spage=487&rft_id=info:doi/10.3390%2Frs15020487&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |