Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use
Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by t...
Gespeichert in:
| Veröffentlicht in: | Therapeutic drug monitoring Jg. 37; H. 2; S. 236 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.04.2015
|
| Schlagworte: | |
| ISSN: | 1536-3694, 1536-3694 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.
Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.
Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).
When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. |
|---|---|
| AbstractList | Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.
Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.
Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).
When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.BACKGROUNDPopulation pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.PATIENTS AND METHODSModel development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).RESULTSModeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.CONCLUSIONSWhen compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. |
| Author | Long-Boyle, Janel R Law, Jason Bartelink, Imke Yan, Shirley Horn, Biljana Dvorak, Christopher C Cowan, Morton J Savic, Rada Musick, Lisa French, Deborah |
| Author_xml | – sequence: 1 givenname: Janel R surname: Long-Boyle fullname: Long-Boyle, Janel R organization: Departments of Clinical Pharmacy, and †Bioengineering and Therapeutics, University of California San Francisco; ‡Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY; Departments of §Pharmacy, UCSF Benioff Children's Hospital, and ¶Laboratory Medicine, UCSF Medical Center, University of California San Francisco; ‖Department of Pediatrics, Floating Hospital for Children, Tufts University, Boston, MA; and Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco – sequence: 2 givenname: Rada surname: Savic fullname: Savic, Rada – sequence: 3 givenname: Shirley surname: Yan fullname: Yan, Shirley – sequence: 4 givenname: Imke surname: Bartelink fullname: Bartelink, Imke – sequence: 5 givenname: Lisa surname: Musick fullname: Musick, Lisa – sequence: 6 givenname: Deborah surname: French fullname: French, Deborah – sequence: 7 givenname: Jason surname: Law fullname: Law, Jason – sequence: 8 givenname: Biljana surname: Horn fullname: Horn, Biljana – sequence: 9 givenname: Morton J surname: Cowan fullname: Cowan, Morton J – sequence: 10 givenname: Christopher C surname: Dvorak fullname: Dvorak, Christopher C |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25162216$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUctuFDEQtFAQecAfIOQjlwljz6xnhhtKSIIUCQ7hvOqx27sGv_DjsHwrH4OXBCl96ZaquqpafU5OfPBIyFvWX7J-mT7cPFxf9s-LDewFOWObQXSDWMaTZ_MpOc_5R6OMc9-_Iqd8wwTnTJyRP99CrBaKCZ7GPSQHMvw0HouRmQZN15qr1eCpaTgqAyUZScEregjV7yioaguNTQB9ybR6hWkXTEP26KCEGMxRi0q0lpYEPkcLvnykQF1QaLsVMiqqQj7ugN2FZMreUR1S80s5eLDmd2OUPSaIh3_WxkWLrhk-5ja-BJpCLS03ldZ4I8HSmvE1eanBZnzz1C_I95vPD1d33f3X2y9Xn-47OYq-dGJlXHAcNmyQ4zyNGkBNWnO-8HVWeuxXDZPQy8LHaYZZKi34iJwxbAPOnF-Q94-6MYVfFXPZOpOPF4PHUPOWCTHMy8SnI_XdE7WuDtU2JuMgHbb_P8L_Apbnl-U |
| CitedBy_id | crossref_primary_10_1111_ejh_13828 crossref_primary_10_1016_j_jtct_2021_11_018 crossref_primary_10_1002_cpt_988 crossref_primary_10_1002_jcph_1992 crossref_primary_10_1016_j_bbmt_2015_05_006 crossref_primary_10_1097_FTD_0000000000000276 crossref_primary_10_3389_fped_2021_775485 crossref_primary_10_1016_j_jchromb_2020_122091 crossref_primary_10_1016_j_bbmt_2019_03_008 crossref_primary_10_1016_j_hoc_2017_06_003 crossref_primary_10_1038_s41409_023_01971_z crossref_primary_10_3390_pharmaceutics16010013 crossref_primary_10_1038_s41409_024_02413_0 crossref_primary_10_1016_j_ejca_2021_11_001 crossref_primary_10_1093_neuonc_noad227 crossref_primary_10_1007_s40265_025_02152_6 crossref_primary_10_1056_NEJMoa1815408 crossref_primary_10_1097_FTD_0000000000000468 crossref_primary_10_1002_cpt_1954 crossref_primary_10_3390_ijms21165634 crossref_primary_10_1111_petr_13696 crossref_primary_10_1111_bcp_14256 crossref_primary_10_1016_j_jaci_2016_01_051 crossref_primary_10_1111_bcp_13566 crossref_primary_10_1016_S2352_3026_16_30114_4 crossref_primary_10_1007_s40262_023_01275_x crossref_primary_10_1111_ejh_13893 crossref_primary_10_1002_pbc_28079 crossref_primary_10_1016_j_addr_2024_115421 crossref_primary_10_1016_j_bbmt_2016_12_619 crossref_primary_10_3389_fphar_2020_00888 crossref_primary_10_1007_s00280_021_04288_0 crossref_primary_10_1016_j_jbi_2021_103687 crossref_primary_10_1053_j_semperi_2015_03_004 crossref_primary_10_1111_bcp_14202 crossref_primary_10_3390_biomedicines11020530 crossref_primary_10_1016_j_reprotox_2017_08_006 crossref_primary_10_1007_s11096_020_00989_3 crossref_primary_10_1016_j_bbmt_2020_07_004 crossref_primary_10_1016_j_jtct_2023_09_024 crossref_primary_10_1002_jcph_1049 crossref_primary_10_1002_cpt_3510 crossref_primary_10_1542_peds_2018_2300 crossref_primary_10_1016_j_jtct_2025_02_002 crossref_primary_10_3389_fphar_2025_1632588 crossref_primary_10_1007_s40124_014_0068_2 crossref_primary_10_1016_j_bbmt_2017_07_022 crossref_primary_10_1038_nrclinonc_2015_204 crossref_primary_10_1002_psp4_12038 crossref_primary_10_3389_fphar_2022_835037 crossref_primary_10_1002_jcph_1120 crossref_primary_10_3389_fped_2022_834773 crossref_primary_10_1038_s41409_021_01545_x crossref_primary_10_1002_psp4_12683 crossref_primary_10_1080_17425255_2023_2192924 crossref_primary_10_1002_pbc_28132 crossref_primary_10_1007_s40262_016_0448_6 crossref_primary_10_1016_j_jtct_2020_12_005 crossref_primary_10_1016_j_addr_2024_115364 crossref_primary_10_1080_17512433_2023_2226866 crossref_primary_10_1007_s40262_020_00877_z crossref_primary_10_1517_14712598_2016_1164688 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/FTD.0000000000000131 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1536-3694 |
| ExternalDocumentID | 25162216 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U54 AI082973 – fundername: NIAID NIH HHS grantid: R13 AI094943 – fundername: NIGMS NIH HHS grantid: T32 GM007546 |
| GroupedDBID | --- .-D .GJ .Z2 0R~ 123 1CY 3O- 4Q1 4Q2 4Q3 53G 5RE 5VS 71W 8L- AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABVCZ ABXVJ ABZAD ABZZY ACDDN ACEWG ACGFO ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AHMBA AHQNM AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BQLVK BS7 C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IN~ IPNFZ J5H JK3 JK8 K8S KD2 KMI L-C N9A NPM N~M O9- OAG OAH OCUKA ODA OL1 OLG OLV OLZ OPC OPUJH ORVUJ OUVQU OVD OVDNE OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RIG RLZ S4R S4S TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W XXN XYM YFH YOC ZFV ZGI ZXP ZY1 ZZMQN 7X8 ADKSD |
| ID | FETCH-LOGICAL-c460t-6b1262e3513c4874faad7ff2292b8df40bfa76f992478a8cdf624e211ef62e822 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351002200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-3694 |
| IngestDate | Mon Sep 08 07:20:39 EDT 2025 Mon Jul 21 06:06:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c460t-6b1262e3513c4874faad7ff2292b8df40bfa76f992478a8cdf624e211ef62e822 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25162216 |
| PQID | 1663897272 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1663897272 pubmed_primary_25162216 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-01 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Therapeutic drug monitoring |
| PublicationTitleAlternate | Ther Drug Monit |
| PublicationYear | 2015 |
| References | 22972539 - Ther Drug Monit. 2012 Oct;34(5):574-83 21918171 - Clin Cancer Res. 2011 Nov 1;17(21):6867-77 7919328 - Blood. 1994 Oct 1;84(7):2144-50 9836718 - Clin Chem. 1998 Dec;44(12):2506-10 11781609 - Bone Marrow Transplant. 2001 Dec;28(11):1013-8 22609040 - Biol Blood Marrow Transplant. 2012 Nov;18(11):1656-63 17393167 - Cancer Chemother Pharmacol. 2008 Jan;61(1):113-23 18641537 - Ther Drug Monit. 2008 Aug;30(4):504-10 10976660 - Clin Pharmacokinet. 2000 Aug;39(2):155-65 12665836 - Bone Marrow Transplant. 2003 Mar;31(6):429-35 21882105 - Handb Exp Pharmacol. 2011;205:51-75 19182832 - Bone Marrow Transplant. 2009 Aug;44(3):145-56 8338934 - Blood. 1993 Aug 1;82(3):1030-4 11781625 - Bone Marrow Transplant. 2001 Oct;28(8):743-51 16327813 - Bone Marrow Transplant. 2006 Feb;37(3):263-9 19891548 - Pharmacogenomics. 2009 Nov;10(11):1729-32 22406655 - Ther Drug Monit. 2012 Apr;34(2):198-208 24625541 - Ther Drug Monit. 2014 Apr;36(2):169-74 17417071 - Ther Drug Monit. 2007 Apr;29(2):177-84 19075073 - Antimicrob Agents Chemother. 2009 Mar;53(3):935-44 13679531 - N Engl J Med. 2003 Sep 18;349(12):1157-67 17214827 - Br J Clin Pharmacol. 2007 Jun;63(6):741-52 8640171 - Bone Marrow Transplant. 1996 Feb;17(2):225-30 17963024 - J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):101-16 9407960 - Cancer Res. 1997 Dec 15;57(24):5509-16 22669290 - Clin Pharmacol Ther. 2012 Jul;92(1):40-9 17192508 - J Clin Pharmacol. 2007 Jan;47(1):101-11 10570028 - Drug Metab Dispos. 1999 Dec;27(12):1466-9 21302010 - AAPS J. 2011 Jun;13(2):143-51 15166618 - Anticancer Drugs. 2004 Jun;15(5):453-9 1244564 - Nephron. 1976;16(1):31-41 2400986 - Cancer Res. 1990 Oct 1;50(19):6203-7 8712747 - Anticancer Res. 1996 Jul-Aug;16(4A):2083-8 22430956 - Antimicrob Agents Chemother. 2012 Jun;56(6):3032-42 9771942 - Carcinogenesis. 1998 Sep;19(9):1685-9 12189535 - Bone Marrow Transplant. 2002 Aug;30(3):167-73 3973793 - J Pediatr. 1985 Mar;106(3):522-6 7581127 - Bone Marrow Transplant. 1995 Jul;16(1):31-42 15064687 - Bone Marrow Transplant. 2004 May;33(10):979-87 2791192 - Cancer Chemother Pharmacol. 1989;24(6):386-90 20237319 - Blood. 2010 Jun 3;115(22):4597-604 18635758 - J Clin Pharmacol. 2008 Sep;48(9):1052-62 21046208 - J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):25-40 16353925 - AAPS J. 2005;7(2):E475-87 19049661 - Fundam Clin Pharmacol. 2008 Dec;22(6):599-604 21135089 - J Clin Pharmacol. 2011 Oct;51(10):1429-38 10195646 - Comput Methods Programs Biomed. 1999 Jan;58(1):51-64 21108564 - Drug Metab Rev. 2011 Feb;43(1):41-52 |
| References_xml | – reference: 15064687 - Bone Marrow Transplant. 2004 May;33(10):979-87 – reference: 21918171 - Clin Cancer Res. 2011 Nov 1;17(21):6867-77 – reference: 8640171 - Bone Marrow Transplant. 1996 Feb;17(2):225-30 – reference: 20237319 - Blood. 2010 Jun 3;115(22):4597-604 – reference: 21046208 - J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):25-40 – reference: 13679531 - N Engl J Med. 2003 Sep 18;349(12):1157-67 – reference: 16353925 - AAPS J. 2005;7(2):E475-87 – reference: 19182832 - Bone Marrow Transplant. 2009 Aug;44(3):145-56 – reference: 12189535 - Bone Marrow Transplant. 2002 Aug;30(3):167-73 – reference: 19891548 - Pharmacogenomics. 2009 Nov;10(11):1729-32 – reference: 21135089 - J Clin Pharmacol. 2011 Oct;51(10):1429-38 – reference: 9771942 - Carcinogenesis. 1998 Sep;19(9):1685-9 – reference: 15166618 - Anticancer Drugs. 2004 Jun;15(5):453-9 – reference: 19049661 - Fundam Clin Pharmacol. 2008 Dec;22(6):599-604 – reference: 9407960 - Cancer Res. 1997 Dec 15;57(24):5509-16 – reference: 8338934 - Blood. 1993 Aug 1;82(3):1030-4 – reference: 16327813 - Bone Marrow Transplant. 2006 Feb;37(3):263-9 – reference: 3973793 - J Pediatr. 1985 Mar;106(3):522-6 – reference: 21302010 - AAPS J. 2011 Jun;13(2):143-51 – reference: 19075073 - Antimicrob Agents Chemother. 2009 Mar;53(3):935-44 – reference: 21108564 - Drug Metab Rev. 2011 Feb;43(1):41-52 – reference: 9836718 - Clin Chem. 1998 Dec;44(12):2506-10 – reference: 17963024 - J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):101-16 – reference: 24625541 - Ther Drug Monit. 2014 Apr;36(2):169-74 – reference: 18641537 - Ther Drug Monit. 2008 Aug;30(4):504-10 – reference: 17417071 - Ther Drug Monit. 2007 Apr;29(2):177-84 – reference: 11781625 - Bone Marrow Transplant. 2001 Oct;28(8):743-51 – reference: 17393167 - Cancer Chemother Pharmacol. 2008 Jan;61(1):113-23 – reference: 10976660 - Clin Pharmacokinet. 2000 Aug;39(2):155-65 – reference: 8712747 - Anticancer Res. 1996 Jul-Aug;16(4A):2083-8 – reference: 18635758 - J Clin Pharmacol. 2008 Sep;48(9):1052-62 – reference: 21882105 - Handb Exp Pharmacol. 2011;205:51-75 – reference: 17214827 - Br J Clin Pharmacol. 2007 Jun;63(6):741-52 – reference: 7581127 - Bone Marrow Transplant. 1995 Jul;16(1):31-42 – reference: 10195646 - Comput Methods Programs Biomed. 1999 Jan;58(1):51-64 – reference: 10570028 - Drug Metab Dispos. 1999 Dec;27(12):1466-9 – reference: 22972539 - Ther Drug Monit. 2012 Oct;34(5):574-83 – reference: 22406655 - Ther Drug Monit. 2012 Apr;34(2):198-208 – reference: 22669290 - Clin Pharmacol Ther. 2012 Jul;92(1):40-9 – reference: 2400986 - Cancer Res. 1990 Oct 1;50(19):6203-7 – reference: 1244564 - Nephron. 1976;16(1):31-41 – reference: 12665836 - Bone Marrow Transplant. 2003 Mar;31(6):429-35 – reference: 2791192 - Cancer Chemother Pharmacol. 1989;24(6):386-90 – reference: 7919328 - Blood. 1994 Oct 1;84(7):2144-50 – reference: 11781609 - Bone Marrow Transplant. 2001 Dec;28(11):1013-8 – reference: 22609040 - Biol Blood Marrow Transplant. 2012 Nov;18(11):1656-63 – reference: 17192508 - J Clin Pharmacol. 2007 Jan;47(1):101-11 – reference: 22430956 - Antimicrob Agents Chemother. 2012 Jun;56(6):3032-42 |
| SSID | ssj0014800 |
| Score | 2.3890724 |
| Snippet | Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 236 |
| SubjectTerms | Adolescent Age Factors Algorithms Busulfan - administration & dosage Busulfan - pharmacokinetics Child Child, Preschool Female Hematopoietic Stem Cell Transplantation Humans Immunosuppressive Agents - administration & dosage Immunosuppressive Agents - pharmacokinetics Infant Male Models, Biological Nonlinear Dynamics Precision Medicine Retrospective Studies Young Adult |
| Title | Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25162216 https://www.proquest.com/docview/1663897272 |
| Volume | 37 |
| WOSCitedRecordID | wos000351002200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaA5cCF92N5aZDQntbaxnGdmAtCQMUBqhyK1Fvl-LEb0Y27TbpS-a38GMaOQy8ckMghimQntmN75rM98w0hb4WVmhdM04mWmnIEpVRlDieeENLkgTFMR3b9r8V8Xi6Xskobbl0yqxxlYhTUxuuwR36WiaBbw7Hh-80VDVGjwulqCqFxkxzlCGWCSVexPJwi8DK6oOCkFjQXko-uc7I4my0-DdSF45WlMHN_BZlR2czu_W8175O7CWbCh2FcPCA3bPuQnFQDT_X-FBYHt6vuFE6gOjBY7x-RX9WfsF6wSSk_EI6G3OAd1Ltut3aqhQbTx1gfoFoD-yA8IJJ6QKJs7SD4qW3PPSpJiBSxfuOb8C0IpwbQR3r1NfbwO1AQI_PQoFsNGB82MkCtz7GF_cUlIMDG8tLq4SfmGLzH9rHo5nI0hY_1btrew9ZjC1sLo_8n7Dr7mHyffV58_EJTGAiquZj0VNQZE8zm0yzXuLziTilTOMeYZHVpHJ_UThXCSVxJFqUqtXGCcYsLW4sPFgHQE3Kr9a19RqCWzOXT0mSWW57XWS15Mam5tkYayw07Jm_GXl3hNAt_QbXW77rVoV-PydNhaKw2Ax_ICiGiYCwTz__h7RfkDkKu6WD785IcORQy9hW5ra_7ptu-juMX7_Pq22-SNgHz |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+pharmacokinetics+of+busulfan+in+pediatric+and+young+adult+patients+undergoing+hematopoietic+cell+transplant%3A+a+model-based+dosing+algorithm+for+personalized+therapy+and+implementation+into+routine+clinical+use&rft.jtitle=Therapeutic+drug+monitoring&rft.au=Long-Boyle%2C+Janel+R&rft.au=Savic%2C+Rada&rft.au=Yan%2C+Shirley&rft.au=Bartelink%2C+Imke&rft.date=2015-04-01&rft.eissn=1536-3694&rft.volume=37&rft.issue=2&rft.spage=236&rft_id=info:doi/10.1097%2FFTD.0000000000000131&rft_id=info%3Apmid%2F25162216&rft_id=info%3Apmid%2F25162216&rft.externalDocID=25162216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-3694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-3694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-3694&client=summon |