Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use

Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Therapeutic drug monitoring Jg. 37; H. 2; S. 236
Hauptverfasser: Long-Boyle, Janel R, Savic, Rada, Yan, Shirley, Bartelink, Imke, Musick, Lisa, French, Deborah, Law, Jason, Horn, Biljana, Cowan, Morton J, Dvorak, Christopher C
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2015
Schlagworte:
ISSN:1536-3694, 1536-3694
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
AbstractList Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.BACKGROUNDPopulation pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation.Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.PATIENTS AND METHODSModel development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model.Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).RESULTSModeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02).When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.CONCLUSIONSWhen compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
Author Long-Boyle, Janel R
Law, Jason
Bartelink, Imke
Yan, Shirley
Horn, Biljana
Dvorak, Christopher C
Cowan, Morton J
Savic, Rada
Musick, Lisa
French, Deborah
Author_xml – sequence: 1
  givenname: Janel R
  surname: Long-Boyle
  fullname: Long-Boyle, Janel R
  organization: Departments of Clinical Pharmacy, and †Bioengineering and Therapeutics, University of California San Francisco; ‡Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY; Departments of §Pharmacy, UCSF Benioff Children's Hospital, and ¶Laboratory Medicine, UCSF Medical Center, University of California San Francisco; ‖Department of Pediatrics, Floating Hospital for Children, Tufts University, Boston, MA; and Department of Pediatrics, UCSF Benioff Children's Hospital, University of California San Francisco
– sequence: 2
  givenname: Rada
  surname: Savic
  fullname: Savic, Rada
– sequence: 3
  givenname: Shirley
  surname: Yan
  fullname: Yan, Shirley
– sequence: 4
  givenname: Imke
  surname: Bartelink
  fullname: Bartelink, Imke
– sequence: 5
  givenname: Lisa
  surname: Musick
  fullname: Musick, Lisa
– sequence: 6
  givenname: Deborah
  surname: French
  fullname: French, Deborah
– sequence: 7
  givenname: Jason
  surname: Law
  fullname: Law, Jason
– sequence: 8
  givenname: Biljana
  surname: Horn
  fullname: Horn, Biljana
– sequence: 9
  givenname: Morton J
  surname: Cowan
  fullname: Cowan, Morton J
– sequence: 10
  givenname: Christopher C
  surname: Dvorak
  fullname: Dvorak, Christopher C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25162216$$D View this record in MEDLINE/PubMed
BookMark eNpNUctuFDEQtFAQecAfIOQjlwljz6xnhhtKSIIUCQ7hvOqx27sGv_DjsHwrH4OXBCl96ZaquqpafU5OfPBIyFvWX7J-mT7cPFxf9s-LDewFOWObQXSDWMaTZ_MpOc_5R6OMc9-_Iqd8wwTnTJyRP99CrBaKCZ7GPSQHMvw0HouRmQZN15qr1eCpaTgqAyUZScEregjV7yioaguNTQB9ybR6hWkXTEP26KCEGMxRi0q0lpYEPkcLvnykQF1QaLsVMiqqQj7ugN2FZMreUR1S80s5eLDmd2OUPSaIh3_WxkWLrhk-5ja-BJpCLS03ldZ4I8HSmvE1eanBZnzz1C_I95vPD1d33f3X2y9Xn-47OYq-dGJlXHAcNmyQ4zyNGkBNWnO-8HVWeuxXDZPQy8LHaYZZKi34iJwxbAPOnF-Q94-6MYVfFXPZOpOPF4PHUPOWCTHMy8SnI_XdE7WuDtU2JuMgHbb_P8L_Apbnl-U
CitedBy_id crossref_primary_10_1111_ejh_13828
crossref_primary_10_1016_j_jtct_2021_11_018
crossref_primary_10_1002_cpt_988
crossref_primary_10_1002_jcph_1992
crossref_primary_10_1016_j_bbmt_2015_05_006
crossref_primary_10_1097_FTD_0000000000000276
crossref_primary_10_3389_fped_2021_775485
crossref_primary_10_1016_j_jchromb_2020_122091
crossref_primary_10_1016_j_bbmt_2019_03_008
crossref_primary_10_1016_j_hoc_2017_06_003
crossref_primary_10_1038_s41409_023_01971_z
crossref_primary_10_3390_pharmaceutics16010013
crossref_primary_10_1038_s41409_024_02413_0
crossref_primary_10_1016_j_ejca_2021_11_001
crossref_primary_10_1093_neuonc_noad227
crossref_primary_10_1007_s40265_025_02152_6
crossref_primary_10_1056_NEJMoa1815408
crossref_primary_10_1097_FTD_0000000000000468
crossref_primary_10_1002_cpt_1954
crossref_primary_10_3390_ijms21165634
crossref_primary_10_1111_petr_13696
crossref_primary_10_1111_bcp_14256
crossref_primary_10_1016_j_jaci_2016_01_051
crossref_primary_10_1111_bcp_13566
crossref_primary_10_1016_S2352_3026_16_30114_4
crossref_primary_10_1007_s40262_023_01275_x
crossref_primary_10_1111_ejh_13893
crossref_primary_10_1002_pbc_28079
crossref_primary_10_1016_j_addr_2024_115421
crossref_primary_10_1016_j_bbmt_2016_12_619
crossref_primary_10_3389_fphar_2020_00888
crossref_primary_10_1007_s00280_021_04288_0
crossref_primary_10_1016_j_jbi_2021_103687
crossref_primary_10_1053_j_semperi_2015_03_004
crossref_primary_10_1111_bcp_14202
crossref_primary_10_3390_biomedicines11020530
crossref_primary_10_1016_j_reprotox_2017_08_006
crossref_primary_10_1007_s11096_020_00989_3
crossref_primary_10_1016_j_bbmt_2020_07_004
crossref_primary_10_1016_j_jtct_2023_09_024
crossref_primary_10_1002_jcph_1049
crossref_primary_10_1002_cpt_3510
crossref_primary_10_1542_peds_2018_2300
crossref_primary_10_1016_j_jtct_2025_02_002
crossref_primary_10_3389_fphar_2025_1632588
crossref_primary_10_1007_s40124_014_0068_2
crossref_primary_10_1016_j_bbmt_2017_07_022
crossref_primary_10_1038_nrclinonc_2015_204
crossref_primary_10_1002_psp4_12038
crossref_primary_10_3389_fphar_2022_835037
crossref_primary_10_1002_jcph_1120
crossref_primary_10_3389_fped_2022_834773
crossref_primary_10_1038_s41409_021_01545_x
crossref_primary_10_1002_psp4_12683
crossref_primary_10_1080_17425255_2023_2192924
crossref_primary_10_1002_pbc_28132
crossref_primary_10_1007_s40262_016_0448_6
crossref_primary_10_1016_j_jtct_2020_12_005
crossref_primary_10_1016_j_addr_2024_115364
crossref_primary_10_1080_17512433_2023_2226866
crossref_primary_10_1007_s40262_020_00877_z
crossref_primary_10_1517_14712598_2016_1164688
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/FTD.0000000000000131
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1536-3694
ExternalDocumentID 25162216
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U54 AI082973
– fundername: NIAID NIH HHS
  grantid: R13 AI094943
– fundername: NIGMS NIH HHS
  grantid: T32 GM007546
GroupedDBID ---
.-D
.GJ
.Z2
0R~
123
1CY
3O-
4Q1
4Q2
4Q3
53G
5RE
5VS
71W
8L-
AAAAV
AAHPQ
AAIQE
AAMTA
AARTV
AASCR
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACWDW
ACWRI
ACXJB
ACXNZ
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AHMBA
AHQNM
AHVBC
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BQLVK
BS7
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
EX3
F2K
F2L
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IN~
IPNFZ
J5H
JK3
JK8
K8S
KD2
KMI
L-C
N9A
NPM
N~M
O9-
OAG
OAH
OCUKA
ODA
OL1
OLG
OLV
OLZ
OPC
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
ZFV
ZGI
ZXP
ZY1
ZZMQN
7X8
ADKSD
ID FETCH-LOGICAL-c460t-6b1262e3513c4874faad7ff2292b8df40bfa76f992478a8cdf624e211ef62e822
IEDL.DBID 7X8
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351002200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-3694
IngestDate Mon Sep 08 07:20:39 EDT 2025
Mon Jul 21 06:06:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-6b1262e3513c4874faad7ff2292b8df40bfa76f992478a8cdf624e211ef62e822
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25162216
PQID 1663897272
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1663897272
pubmed_primary_25162216
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Therapeutic drug monitoring
PublicationTitleAlternate Ther Drug Monit
PublicationYear 2015
References 22972539 - Ther Drug Monit. 2012 Oct;34(5):574-83
21918171 - Clin Cancer Res. 2011 Nov 1;17(21):6867-77
7919328 - Blood. 1994 Oct 1;84(7):2144-50
9836718 - Clin Chem. 1998 Dec;44(12):2506-10
11781609 - Bone Marrow Transplant. 2001 Dec;28(11):1013-8
22609040 - Biol Blood Marrow Transplant. 2012 Nov;18(11):1656-63
17393167 - Cancer Chemother Pharmacol. 2008 Jan;61(1):113-23
18641537 - Ther Drug Monit. 2008 Aug;30(4):504-10
10976660 - Clin Pharmacokinet. 2000 Aug;39(2):155-65
12665836 - Bone Marrow Transplant. 2003 Mar;31(6):429-35
21882105 - Handb Exp Pharmacol. 2011;205:51-75
19182832 - Bone Marrow Transplant. 2009 Aug;44(3):145-56
8338934 - Blood. 1993 Aug 1;82(3):1030-4
11781625 - Bone Marrow Transplant. 2001 Oct;28(8):743-51
16327813 - Bone Marrow Transplant. 2006 Feb;37(3):263-9
19891548 - Pharmacogenomics. 2009 Nov;10(11):1729-32
22406655 - Ther Drug Monit. 2012 Apr;34(2):198-208
24625541 - Ther Drug Monit. 2014 Apr;36(2):169-74
17417071 - Ther Drug Monit. 2007 Apr;29(2):177-84
19075073 - Antimicrob Agents Chemother. 2009 Mar;53(3):935-44
13679531 - N Engl J Med. 2003 Sep 18;349(12):1157-67
17214827 - Br J Clin Pharmacol. 2007 Jun;63(6):741-52
8640171 - Bone Marrow Transplant. 1996 Feb;17(2):225-30
17963024 - J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):101-16
9407960 - Cancer Res. 1997 Dec 15;57(24):5509-16
22669290 - Clin Pharmacol Ther. 2012 Jul;92(1):40-9
17192508 - J Clin Pharmacol. 2007 Jan;47(1):101-11
10570028 - Drug Metab Dispos. 1999 Dec;27(12):1466-9
21302010 - AAPS J. 2011 Jun;13(2):143-51
15166618 - Anticancer Drugs. 2004 Jun;15(5):453-9
1244564 - Nephron. 1976;16(1):31-41
2400986 - Cancer Res. 1990 Oct 1;50(19):6203-7
8712747 - Anticancer Res. 1996 Jul-Aug;16(4A):2083-8
22430956 - Antimicrob Agents Chemother. 2012 Jun;56(6):3032-42
9771942 - Carcinogenesis. 1998 Sep;19(9):1685-9
12189535 - Bone Marrow Transplant. 2002 Aug;30(3):167-73
3973793 - J Pediatr. 1985 Mar;106(3):522-6
7581127 - Bone Marrow Transplant. 1995 Jul;16(1):31-42
15064687 - Bone Marrow Transplant. 2004 May;33(10):979-87
2791192 - Cancer Chemother Pharmacol. 1989;24(6):386-90
20237319 - Blood. 2010 Jun 3;115(22):4597-604
18635758 - J Clin Pharmacol. 2008 Sep;48(9):1052-62
21046208 - J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):25-40
16353925 - AAPS J. 2005;7(2):E475-87
19049661 - Fundam Clin Pharmacol. 2008 Dec;22(6):599-604
21135089 - J Clin Pharmacol. 2011 Oct;51(10):1429-38
10195646 - Comput Methods Programs Biomed. 1999 Jan;58(1):51-64
21108564 - Drug Metab Rev. 2011 Feb;43(1):41-52
References_xml – reference: 15064687 - Bone Marrow Transplant. 2004 May;33(10):979-87
– reference: 21918171 - Clin Cancer Res. 2011 Nov 1;17(21):6867-77
– reference: 8640171 - Bone Marrow Transplant. 1996 Feb;17(2):225-30
– reference: 20237319 - Blood. 2010 Jun 3;115(22):4597-604
– reference: 21046208 - J Pharmacokinet Pharmacodyn. 2011 Feb;38(1):25-40
– reference: 13679531 - N Engl J Med. 2003 Sep 18;349(12):1157-67
– reference: 16353925 - AAPS J. 2005;7(2):E475-87
– reference: 19182832 - Bone Marrow Transplant. 2009 Aug;44(3):145-56
– reference: 12189535 - Bone Marrow Transplant. 2002 Aug;30(3):167-73
– reference: 19891548 - Pharmacogenomics. 2009 Nov;10(11):1729-32
– reference: 21135089 - J Clin Pharmacol. 2011 Oct;51(10):1429-38
– reference: 9771942 - Carcinogenesis. 1998 Sep;19(9):1685-9
– reference: 15166618 - Anticancer Drugs. 2004 Jun;15(5):453-9
– reference: 19049661 - Fundam Clin Pharmacol. 2008 Dec;22(6):599-604
– reference: 9407960 - Cancer Res. 1997 Dec 15;57(24):5509-16
– reference: 8338934 - Blood. 1993 Aug 1;82(3):1030-4
– reference: 16327813 - Bone Marrow Transplant. 2006 Feb;37(3):263-9
– reference: 3973793 - J Pediatr. 1985 Mar;106(3):522-6
– reference: 21302010 - AAPS J. 2011 Jun;13(2):143-51
– reference: 19075073 - Antimicrob Agents Chemother. 2009 Mar;53(3):935-44
– reference: 21108564 - Drug Metab Rev. 2011 Feb;43(1):41-52
– reference: 9836718 - Clin Chem. 1998 Dec;44(12):2506-10
– reference: 17963024 - J Pharmacokinet Pharmacodyn. 2008 Feb;35(1):101-16
– reference: 24625541 - Ther Drug Monit. 2014 Apr;36(2):169-74
– reference: 18641537 - Ther Drug Monit. 2008 Aug;30(4):504-10
– reference: 17417071 - Ther Drug Monit. 2007 Apr;29(2):177-84
– reference: 11781625 - Bone Marrow Transplant. 2001 Oct;28(8):743-51
– reference: 17393167 - Cancer Chemother Pharmacol. 2008 Jan;61(1):113-23
– reference: 10976660 - Clin Pharmacokinet. 2000 Aug;39(2):155-65
– reference: 8712747 - Anticancer Res. 1996 Jul-Aug;16(4A):2083-8
– reference: 18635758 - J Clin Pharmacol. 2008 Sep;48(9):1052-62
– reference: 21882105 - Handb Exp Pharmacol. 2011;205:51-75
– reference: 17214827 - Br J Clin Pharmacol. 2007 Jun;63(6):741-52
– reference: 7581127 - Bone Marrow Transplant. 1995 Jul;16(1):31-42
– reference: 10195646 - Comput Methods Programs Biomed. 1999 Jan;58(1):51-64
– reference: 10570028 - Drug Metab Dispos. 1999 Dec;27(12):1466-9
– reference: 22972539 - Ther Drug Monit. 2012 Oct;34(5):574-83
– reference: 22406655 - Ther Drug Monit. 2012 Apr;34(2):198-208
– reference: 22669290 - Clin Pharmacol Ther. 2012 Jul;92(1):40-9
– reference: 2400986 - Cancer Res. 1990 Oct 1;50(19):6203-7
– reference: 1244564 - Nephron. 1976;16(1):31-41
– reference: 12665836 - Bone Marrow Transplant. 2003 Mar;31(6):429-35
– reference: 2791192 - Cancer Chemother Pharmacol. 1989;24(6):386-90
– reference: 7919328 - Blood. 1994 Oct 1;84(7):2144-50
– reference: 11781609 - Bone Marrow Transplant. 2001 Dec;28(11):1013-8
– reference: 22609040 - Biol Blood Marrow Transplant. 2012 Nov;18(11):1656-63
– reference: 17192508 - J Clin Pharmacol. 2007 Jan;47(1):101-11
– reference: 22430956 - Antimicrob Agents Chemother. 2012 Jun;56(6):3032-42
SSID ssj0014800
Score 2.3891585
Snippet Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 236
SubjectTerms Adolescent
Age Factors
Algorithms
Busulfan - administration & dosage
Busulfan - pharmacokinetics
Child
Child, Preschool
Female
Hematopoietic Stem Cell Transplantation
Humans
Immunosuppressive Agents - administration & dosage
Immunosuppressive Agents - pharmacokinetics
Infant
Male
Models, Biological
Nonlinear Dynamics
Precision Medicine
Retrospective Studies
Young Adult
Title Population pharmacokinetics of busulfan in pediatric and young adult patients undergoing hematopoietic cell transplant: a model-based dosing algorithm for personalized therapy and implementation into routine clinical use
URI https://www.ncbi.nlm.nih.gov/pubmed/25162216
https://www.proquest.com/docview/1663897272
Volume 37
WOSCitedRecordID wos000351002200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaA5cCF92N5aZDQntbaxnGdmAtCQMUBqhyK1Ftlx_ZuRDfuNulK5bfyYxg7Dr1wQCKHKJKd2I7Hns8ezzeEvJVM5QiDHc2Di08QCqpRr9JMBL4iVdSZi1FLvhbzeblcyiptuHXpWOU4J8aJ2vg67JGfZSLo1mA2fL-5oiFqVLCuphAaN8lRjlAmHOkqlgcrAi-jCwoOakFzIfnoOieLs9ni00BdOF5ZCjP3V5AZlc3s3v9W8z65m2AmfBjk4gG5YduH5KQaeKr3p7A4uF11p3AC1YHBev-I_Kr-hPWCTUr5gXA05AbvQO-63dqpFhpMH2N9gGoN7MPkAZHUAxJlawfBT2177lFJQqSI9RvfhG9BsBpAH-nV19jD70BBjMxDg241YHzYyAC1PscW9heXgAAby0urh5-YY_Ae28eim8vxKHysd9P2HrYeW9haGP0_YdfZx-T77PPi4xeawkDQmotJT4XOmGA2n2Z5jcsr7pQyhXOMSaZL4_hEO1UIJ3ElWZSqrI0TjFtc2Fp8sAiAnpBbrW_tMwJSutyWLi8115yhxEij-IQLrU02dZwfkzdjr65wmIW_oFrrd93q0K_H5OkgGqvNwAeyQogoGMvE8394-wW5g5BrOpz9eUmOHE4y9hW5XV_3Tbd9HeUX7_Pq228NOAEM
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+pharmacokinetics+of+busulfan+in+pediatric+and+young+adult+patients+undergoing+hematopoietic+cell+transplant%3A+a+model-based+dosing+algorithm+for+personalized+therapy+and+implementation+into+routine+clinical+use&rft.jtitle=Therapeutic+drug+monitoring&rft.au=Long-Boyle%2C+Janel+R&rft.au=Savic%2C+Rada&rft.au=Yan%2C+Shirley&rft.au=Bartelink%2C+Imke&rft.date=2015-04-01&rft.eissn=1536-3694&rft.volume=37&rft.issue=2&rft.spage=236&rft_id=info:doi/10.1097%2FFTD.0000000000000131&rft_id=info%3Apmid%2F25162216&rft_id=info%3Apmid%2F25162216&rft.externalDocID=25162216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-3694&client=summon