Further remarks on totally ordered representable subsets of Euclidean space

We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical economics Jg. 25; H. 4; S. 381 - 390
Hauptverfasser: Candeal, Juan C., Induráin, Esteban, Mehta, Ghanshyam B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 1996
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:Journal of Mathematical Economics
Schlagworte:
ISSN:0304-4068, 1873-1538
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the property of ≾ -norm-boundedness on totally ordered subsets of Euclidean spaces. We show that when a closed subset X of the Euclidean space R n, endowed with a continuous total order ≾, is ≾ -norm-bounded, the order topology and the induced Euclidean topology must coincide on X. This generalizes a recent result by Beardon, proved on connected totally ordered subsets of Euclidean space, because on totally ordered closed subsets of R n connectedness is a particular case of ≾ -norm-boundedness. We also analyze necessary and sufficient conditions for the coincidence of both topologies, and discuss some extension to the infinite-dimensional context.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0304-4068
1873-1538
DOI:10.1016/0304-4068(95)00734-2