Personalized treatment selection in routine care: Integrating machine learning and statistical algorithms to recommend cognitive behavioral or psychodynamic therapy

Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal treatment based on their pre-treatment characteristics. Methods: A disorder-heterogeneous, naturalistic sample of N = 1,379 o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychotherapy research Jg. 31; H. 1; S. 33 - 51
Hauptverfasser: Schwartz, Brian, Cohen, Zachary D., Rubel, Julian A., Zimmermann, Dirk, Wittmann, Werner W., Lutz, Wolfgang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Routledge 2021
Taylor & Francis Ltd
Schlagworte:
ISSN:1050-3307, 1468-4381, 1468-4381
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal treatment based on their pre-treatment characteristics. Methods: A disorder-heterogeneous, naturalistic sample of N = 1,379 outpatients treated with either cognitive behavioral therapy or psychodynamic therapy was analyzed. Based on a combination of random forest and linear regression, differential treatment response was modeled in the training data (n = 966) to indicate each individual's optimal treatment. A separate holdout dataset (n = 413) was used to evaluate personalized recommendations. Results: The difference in outcomes between patients treated with their optimal vs. non-optimal treatment was significant in the training data, but non-significant in the holdout data (b = -0.043, p = .280). However, for the 50% of patients with the largest predicted benefit of receiving their optimal treatment, the average percentage of change on the BSI in the holdout data was 52.6% for their optimal and 38.4% for their non-optimal treatment (p = .017; d = 0.33 [0.06, 0.61]). Conclusion: A treatment selection algorithm based on a combination of ML and statistical inference might improve treatment outcome for some, but not all outpatients and could support therapists' clinical decision-making.
AbstractList Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients’ optimal treatment based on their pre-treatment characteristics. Methods: A disorder-heterogeneous, naturalistic sample of N = 1,379 outpatients treated with either cognitive behavioral therapy or psychodynamic therapy was analyzed. Based on a combination of random forest and linear regression, differential treatment response was modeled in the training data (n = 966) to indicate each individual’s optimal treatment. A separate holdout dataset (n = 413) was used to evaluate personalized recommendations. Results: The difference in outcomes between patients treated with their optimal vs. non-optimal treatment was significant in the training data, but non-significant in the holdout data (b = –0.043, p = .280). However, for the 50% of patients with the largest predicted benefit of receiving their optimal treatment, the average percentage of change on the BSI in the holdout data was 52.6% for their optimal and 38.4% for their non-optimal treatment (p = .017; d = 0.33 [0.06, 0.61]). Conclusion: A treatment selection algorithm based on a combination of ML and statistical inference might improve treatment outcome for some, but not all outpatients and could support therapists’ clinical decision-making.
This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal treatment based on their pre-treatment characteristics. A disorder-heterogeneous, naturalistic sample of = 1,379 outpatients treated with either cognitive behavioral therapy or psychodynamic therapy was analyzed. Based on a combination of random forest and linear regression, differential treatment response was modeled in the training data ( = 966) to indicate each individual's optimal treatment. A separate holdout dataset ( = 413) was used to evaluate personalized recommendations. The difference in outcomes between patients treated with their optimal vs. non-optimal treatment was significant in the training data, but non-significant in the holdout data (  = -0.043,  = .280). However, for the 50% of patients with the largest predicted benefit of receiving their optimal treatment, the average percentage of change on the BSI in the holdout data was 52.6% for their optimal and 38.4% for their non-optimal treatment ( = .017; = 0.33 [0.06, 0.61]). A treatment selection algorithm based on a combination of ML and statistical inference might improve treatment outcome for some, but not all outpatients and could support therapists' clinical decision-making.
Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal treatment based on their pre-treatment characteristics. Methods: A disorder-heterogeneous, naturalistic sample of N = 1,379 outpatients treated with either cognitive behavioral therapy or psychodynamic therapy was analyzed. Based on a combination of random forest and linear regression, differential treatment response was modeled in the training data (n = 966) to indicate each individual's optimal treatment. A separate holdout dataset (n = 413) was used to evaluate personalized recommendations. Results: The difference in outcomes between patients treated with their optimal vs. non-optimal treatment was significant in the training data, but non-significant in the holdout data (b = -0.043, p = .280). However, for the 50% of patients with the largest predicted benefit of receiving their optimal treatment, the average percentage of change on the BSI in the holdout data was 52.6% for their optimal and 38.4% for their non-optimal treatment (p = .017; d = 0.33 [0.06, 0.61]). Conclusion: A treatment selection algorithm based on a combination of ML and statistical inference might improve treatment outcome for some, but not all outpatients and could support therapists' clinical decision-making.Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal treatment based on their pre-treatment characteristics. Methods: A disorder-heterogeneous, naturalistic sample of N = 1,379 outpatients treated with either cognitive behavioral therapy or psychodynamic therapy was analyzed. Based on a combination of random forest and linear regression, differential treatment response was modeled in the training data (n = 966) to indicate each individual's optimal treatment. A separate holdout dataset (n = 413) was used to evaluate personalized recommendations. Results: The difference in outcomes between patients treated with their optimal vs. non-optimal treatment was significant in the training data, but non-significant in the holdout data (b = -0.043, p = .280). However, for the 50% of patients with the largest predicted benefit of receiving their optimal treatment, the average percentage of change on the BSI in the holdout data was 52.6% for their optimal and 38.4% for their non-optimal treatment (p = .017; d = 0.33 [0.06, 0.61]). Conclusion: A treatment selection algorithm based on a combination of ML and statistical inference might improve treatment outcome for some, but not all outpatients and could support therapists' clinical decision-making.
Author Cohen, Zachary D.
Schwartz, Brian
Zimmermann, Dirk
Rubel, Julian A.
Lutz, Wolfgang
Wittmann, Werner W.
Author_xml – sequence: 1
  givenname: Brian
  orcidid: 0000-0003-4695-4953
  surname: Schwartz
  fullname: Schwartz, Brian
  email: schwartzb@uni-trier.de
  organization: University of Trier
– sequence: 2
  givenname: Zachary D.
  orcidid: 0000-0002-4883-1028
  surname: Cohen
  fullname: Cohen, Zachary D.
  organization: University of California
– sequence: 3
  givenname: Julian A.
  orcidid: 0000-0002-9625-6611
  surname: Rubel
  fullname: Rubel, Julian A.
  organization: Justus-Liebig-University Giessen
– sequence: 4
  givenname: Dirk
  orcidid: 0000-0002-8764-6343
  surname: Zimmermann
  fullname: Zimmermann, Dirk
  organization: University of Trier
– sequence: 5
  givenname: Werner W.
  surname: Wittmann
  fullname: Wittmann, Werner W.
  organization: University of Mannheim
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0002-5141-3847
  surname: Lutz
  fullname: Lutz, Wolfgang
  organization: University of Trier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32463342$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRVsoiDzgE0CW2LCZ4Ee3uxs2QRGPSJFgAWurxl2ecdRtD2VP0PA9-dC4NTObLGBlq-rcW9K959VJiAGr6rXgl4J3_L3gDVeKt5eSyzJqdS9F_6w6E7XuFrXqxEn5F2YxQ6fVeUp3nIu24_xFdapkrZWq5Vn18AMpxQCj_4sDy4SQJwyZJRzRZh8D84FR3GYfkFkg_MBuQsYVQZms2AR2PW9GBArzAMLAUi7LlL2FkcG4iuTzekosR0Zo41T8B2bjKvjs75EtcQ33PlKBI7FN2tl1HHYBJm9ZXiPBZveyeu5gTPjq8F5Uv758_nn9bXH7_evN9afbha01zwvR943uG946bZdL12jkvdAatJBaOo0gamc7ha7uUEntLGo38J73EroeBVcX1bu974bi7y2mbCafLI4jBIzbZGTN26bjTasK-vYJehe3VHKcqbaWvZJKF-rNgdouJxzMhvwEtDPH_AvwcQ9YiikROmP9nF4MmcCPRnAzt22ObZu5bXNou6ibJ-rjgf_prvY6H1ykCf5EGgeTYTdGcgTB-mTUvy0eAXoIw8A
CitedBy_id crossref_primary_10_1007_s10488_023_01340_4
crossref_primary_10_1080_10503307_2025_2517567
crossref_primary_10_1016_j_jad_2023_02_021
crossref_primary_10_1007_s41811_020_00094_3
crossref_primary_10_1038_s41598_024_71854_w
crossref_primary_10_1080_10503307_2021_1916120
crossref_primary_10_1016_j_beth_2022_11_004
crossref_primary_10_3390_electronics14061110
crossref_primary_10_1080_10503307_2023_2269297
crossref_primary_10_3389_fpubh_2023_1102434
crossref_primary_10_1177_20552076211060659
crossref_primary_10_1002_cpp_2876
crossref_primary_10_1146_annurev_clinpsy_071720_014821
crossref_primary_10_1038_s41598_025_00916_4
crossref_primary_10_1017_S0033291724003118
crossref_primary_10_3389_fpsyt_2023_1236551
crossref_primary_10_1001_jamanetworkopen_2024_23241
crossref_primary_10_1055_a_1215_1541
crossref_primary_10_1016_j_brat_2025_104752
crossref_primary_10_1055_a_2450_9882
crossref_primary_10_3389_fpsyt_2021_613085
crossref_primary_10_1055_a_2170_7467
crossref_primary_10_1002_wps_20882
crossref_primary_10_1007_s10488_023_01302_w
crossref_primary_10_1080_00273171_2022_2146638
crossref_primary_10_1080_10503307_2021_1930242
crossref_primary_10_1016_j_jval_2022_07_011
crossref_primary_10_1007_s10488_023_01303_9
crossref_primary_10_1007_s10488_023_01309_3
crossref_primary_10_1007_s40894_023_00228_6
crossref_primary_10_18863_pgy_1538432
crossref_primary_10_2196_41566
crossref_primary_10_1097_j_pain_0000000000003363
crossref_primary_10_1007_s11764_023_01423_z
crossref_primary_10_1016_j_jad_2024_04_015
crossref_primary_10_1002_jts_22980
crossref_primary_10_1007_s00406_023_01604_y
crossref_primary_10_1016_j_cbpra_2022_02_008
crossref_primary_10_1177_14727978251355786
crossref_primary_10_1016_j_chbah_2023_100008
crossref_primary_10_1055_a_2137_8561
crossref_primary_10_1016_j_brat_2025_104689
crossref_primary_10_1016_j_janxdis_2022_102611
crossref_primary_10_1016_j_brat_2023_104443
crossref_primary_10_3390_jcm14072265
crossref_primary_10_1080_10503307_2023_2182241
crossref_primary_10_1007_s10488_024_01351_9
crossref_primary_10_1001_jamapsychiatry_2025_2518
crossref_primary_10_1016_j_compbiomed_2024_108134
crossref_primary_10_1007_s10488_023_01330_6
crossref_primary_10_3390_jcm10194522
crossref_primary_10_13109_zptm_2024_70_4_370
crossref_primary_10_1093_pm_pnab102
crossref_primary_10_1080_10503307_2020_1808729
crossref_primary_10_1177_20552076221129098
crossref_primary_10_1055_a_2034_4896
crossref_primary_10_1080_10503307_2022_2161432
crossref_primary_10_1177_21677026211071043
crossref_primary_10_1080_10503307_2024_2360449
crossref_primary_10_1111_bjc_12508
Cites_doi 10.1023/A:1010933404324
10.1207/s15327752jpa6703_13
10.1001/archpsyc.1976.01770060086012
10.1080/03009740701607067
10.1002/wps.20345
10.1027/1015-5759.22.2.98
10.1186/s12888-017-1464-2
10.18637/jss.v042.i08
10.1177/0011000005285875
10.1080/10503307.2019.1662510
10.1177/2167702618815466
10.1146/annurev-clinpsy-050817-084746
10.1056/NEJMp1006304
10.1016/j.cpr.2005.07.003
10.1016/S0272-7358(99)00057-4
10.1126/science.aaa8415
10.1001/jama.2017.18391
10.1136/bmj.k4245
10.1186/s12916-015-0494-1
10.1037/cap0000096
10.1038/nmeth.4642
10.1186/1471-2105-10-213
10.1038/s41598-018-25953-0
10.1038/nmeth.4526
10.1017/S0033291718001708
10.1177/0011000006295149
10.1007/s10608-012-9476-1
10.1023/A:1020363010465
10.4324/9780203582015
10.1002/da.22731
10.1016/j.scitotenv.2018.06.389
10.1017/S0033291720000550
10.1371/journal.pone.0140771
10.1080/10503307.2018.1563312
10.1016/j.cpr.2009.08.010
10.1037/ccp0000476
10.5721/EuJRS20124535
10.1002/cpp.496
10.1176/appi.ajp.2013.12070899
10.1080/10503307.2015.1053553
10.1097/00005650-199603000-00003
10.1002/da.22755
10.1016/j.brat.2019.103438
10.1016/j.ijforecast.2018.06.001
10.1016/j.brat.2007.12.005
10.1002/jclp.20108
10.1080/10503307.2013.856046
10.1016/j.conb.2019.02.006
10.1159/000487893
10.1037/1040-3590.18.2.133
10.1001/jamapsychiatry.2016.1720
10.1016/j.brat.2020.103596
10.1016/0272-7358(88)90050-5
10.1136/gut.2003.025080
10.1371/journal.pone.0194889
10.1037/a0013075
10.1371/journal.pone.0083875
10.1056/NEJMp1606181
10.1002/da.22728
10.1017/S2045796016000020
10.1093/biomet/70.1.41
10.1126/science.185.4157.1124
10.1017/S0033291719003192
10.1055/s-0032-1321781
10.1093/bioinformatics/btr597
10.1038/nmeth.4438
10.1145/1143844.1143865
10.1080/10503307.2015.1079661
ContentType Journal Article
Copyright 2020 Society for Psychotherapy Research 2020
2020 Society for Psychotherapy Research
Copyright_xml – notice: 2020 Society for Psychotherapy Research 2020
– notice: 2020 Society for Psychotherapy Research
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
7X8
DOI 10.1080/10503307.2020.1769219
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1468-4381
EndPage 51
ExternalDocumentID 32463342
10_1080_10503307_2020_1769219
1769219
Genre Research Article
Journal Article
GroupedDBID ---
.7I
.QK
0BK
0R~
123
29P
2DF
4.4
53G
5VS
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGEJ
ACGFO
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADXPE
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBD
EBS
EMOBN
ESX
E~B
E~C
F5P
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
RWL
S-F
STATR
SV3
TAE
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNJ
TNTFI
TRJHH
TUROJ
TUS
UT5
UT9
VAE
WH7
~01
~S~
AAYXX
CITATION
07M
1TA
4B3
9M8
AACLK
AAIFK
AASXD
AAYMM
ABGQD
ABITY
ABLUQ
ABYAV
ACIKQ
ACVBB
ADDRM
ADYSH
AEBKF
AFLWG
AFUSO
BTBAK
C5A
CAG
CKOZC
COF
C~T
DAOCQ
DEWOD
DTEEQ
DYOWO
EJD
JEUJS
L7Y
NPM
PNGSA
PPYGK
RNI
ROL
RZO
TBH
THLUP
UA1
8BJ
FQK
JBE
7X8
ID FETCH-LOGICAL-c460t-199569507f6cbbf56e09166a61262f6ea14fc83ef48e326fce6fd09092a89e103
IEDL.DBID TFW
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1050-3307
1468-4381
IngestDate Sun Nov 09 14:11:20 EST 2025
Sun Nov 09 09:42:43 EST 2025
Mon Jul 21 05:56:10 EDT 2025
Tue Nov 18 21:25:36 EST 2025
Sat Nov 29 04:59:38 EST 2025
Mon Oct 20 23:48:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords outcome prediction
outpatient psychotherapy
precision medicine
random forest
variable selection
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c460t-199569507f6cbbf56e09166a61262f6ea14fc83ef48e326fce6fd09092a89e103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4883-1028
0000-0002-5141-3847
0000-0002-9625-6611
0000-0002-8764-6343
0000-0003-4695-4953
PMID 32463342
PQID 2474293236
PQPubID 31397
PageCount 19
ParticipantIDs crossref_citationtrail_10_1080_10503307_2020_1769219
proquest_miscellaneous_2407580573
proquest_journals_2474293236
informaworld_taylorfrancis_310_1080_10503307_2020_1769219
crossref_primary_10_1080_10503307_2020_1769219
pubmed_primary_32463342
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Psychotherapy research
PublicationTitleAlternate Psychother Res
PublicationYear 2021
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References CIT0030
CIT0074
Derogatis L. R. (CIT0021) 1977
Guo S. (CIT0034) 2015
Schellberg D. (CIT0081) 1995
CIT0032
CIT0076
CIT0078
CIT0033
CIT0077
Ehlers A. (CIT0025) 2001
CIT0070
Horowitz L. M. (CIT0039) 2000
Petkovic D. (CIT0071) 2018; 23
Hunot V. (CIT0041) 2013; 10
CIT0036
CIT0035
CIT0079
CIT0038
CIT0037
CIT0083
CIT0085
CIT0040
CIT0084
CIT0043
Rathner G. (CIT0072) 1997; 45
CIT0087
CIT0042
CIT0086
CIT0001
CIT0045
CIT0089
CIT0044
CIT0088
Schepank H. (CIT0082) 1995
CIT0080
Wittmann W. W. (CIT0092) 2011; 3
Luborsky L. (CIT0052) 1996; 5
CIT0003
CIT0002
CIT0046
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
Klepsch R. (CIT0047) 1993
CIT0050
CIT0051
Meehl P. E. (CIT0064) 1954
CIT0010
CIT0054
Lutz W. (CIT0055) 2020
CIT0053
CIT0012
CIT0056
CIT0011
Gemeinsamer Bundesausschuss (CIT0031) 2009; 58
Beck A. T. (CIT0005) 1996
CIT0090
CIT0091
R Core Team (CIT0073) 2018
CIT0014
CIT0058
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
Rief W. (CIT0075) 1997
Chen T. (CIT0013) 2013; 2013
CIT0063
CIT0062
CIT0065
CIT0020
CIT0023
CIT0067
CIT0022
CIT0066
Lambert M. J. (CIT0049) 2013
Franke G. H. (CIT0029) 2000
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0028
References_xml – ident: CIT0007
  doi: 10.1023/A:1010933404324
– ident: CIT0004
  doi: 10.1207/s15327752jpa6703_13
– ident: CIT0026
  doi: 10.1001/archpsyc.1976.01770060086012
– ident: CIT0048
  doi: 10.1080/03009740701607067
– ident: CIT0070
  doi: 10.1002/wps.20345
– ident: CIT0033
  doi: 10.1027/1015-5759.22.2.98
– ident: CIT0061
  doi: 10.1186/s12888-017-1464-2
– volume: 23
  start-page: 204
  year: 2018
  ident: CIT0071
  publication-title: Pacific Symposium on Biocomputing
– volume: 10
  start-page: CD008704
  year: 2013
  ident: CIT0041
  publication-title: The Cochrane Database of Systematic Reviews
– start-page: 18
  volume-title: Der Beeinträchtigungs-Schwere-score (BSS). Ein instrument zur Bestimmung der Schwere einer psychogenen Erkrankung
  year: 1995
  ident: CIT0081
– ident: CIT0037
  doi: 10.18637/jss.v042.i08
– ident: CIT0001
  doi: 10.1177/0011000005285875
– volume-title: Der Beeinträchtigungs-Schwere-Score (BSS). Ein Instrument zur Bestimmung der Schwere einer psychogenen Erkrankung
  year: 1995
  ident: CIT0082
– ident: CIT0069
  doi: 10.1080/10503307.2019.1662510
– ident: CIT0053
  doi: 10.1177/2167702618815466
– volume-title: Propensity score analysis: Statistical methods and applications
  year: 2015
  ident: CIT0034
– volume: 45
  start-page: 157
  issue: 2
  year: 1997
  ident: CIT0072
  publication-title: Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie
– volume-title: R: A language and environment for statistical computing
  year: 2018
  ident: CIT0073
– ident: CIT0015
  doi: 10.1146/annurev-clinpsy-050817-084746
– ident: CIT0035
  doi: 10.1056/NEJMp1006304
– volume-title: Beck depression inventory-II (BDI-II)
  year: 1996
  ident: CIT0005
– volume: 58
  start-page: 1399
  year: 2009
  ident: CIT0031
  publication-title: Bundesanzeiger
– ident: CIT0008
  doi: 10.1016/j.cpr.2005.07.003
– volume-title: Bergin and Garfield`s handbook of psychotherapy and behavior change
  year: 2020
  ident: CIT0055
– ident: CIT0050
  doi: 10.1016/S0272-7358(99)00057-4
– volume-title: BSI. Brief Symptom Inventory - Deutsche version. Manual
  year: 2000
  ident: CIT0029
– ident: CIT0042
  doi: 10.1126/science.aaa8415
– ident: CIT0003
  doi: 10.1001/jama.2017.18391
– ident: CIT0045
  doi: 10.1136/bmj.k4245
– ident: CIT0051
  doi: 10.1186/s12916-015-0494-1
– ident: CIT0017
  doi: 10.1037/cap0000096
– volume-title: SOMS: Das Screening für somatoforme Störungen. Manual zum Fragebogen
  year: 1997
  ident: CIT0075
– ident: CIT0009
  doi: 10.1038/nmeth.4642
– ident: CIT0065
  doi: 10.1186/1471-2105-10-213
– volume-title: SCL-90-R: Administration, scoring and procedures manual
  year: 1977
  ident: CIT0021
– ident: CIT0060
  doi: 10.1038/s41598-018-25953-0
– ident: CIT0010
  doi: 10.1038/nmeth.4526
– ident: CIT0091
  doi: 10.1017/S0033291718001708
– year: 1954
  ident: CIT0064
  publication-title: MN: University of Minnesota Press
– ident: CIT0083
  doi: 10.1177/0011000006295149
– ident: CIT0038
  doi: 10.1007/s10608-012-9476-1
– ident: CIT0078
  doi: 10.1023/A:1020363010465
– volume: 3
  start-page: 6
  issue: 3
  year: 2011
  ident: CIT0092
  publication-title: Psychotherapie Aktuell
– ident: CIT0089
  doi: 10.4324/9780203582015
– ident: CIT0044
  doi: 10.1002/da.22731
– ident: CIT0014
  doi: 10.1016/j.scitotenv.2018.06.389
– ident: CIT0043
  doi: 10.1017/S0033291720000550
– volume-title: Bergin and Garfield’s handbook of psychotherapy and behavior change
  year: 2013
  ident: CIT0049
– ident: CIT0040
  doi: 10.1371/journal.pone.0140771
– ident: CIT0016
  doi: 10.1080/10503307.2018.1563312
– ident: CIT0084
– ident: CIT0023
  doi: 10.1016/j.cpr.2009.08.010
– ident: CIT0020
  doi: 10.1037/ccp0000476
– ident: CIT0067
  doi: 10.5721/EuJRS20124535
– ident: CIT0056
  doi: 10.1002/cpp.496
– ident: CIT0024
  doi: 10.1176/appi.ajp.2013.12070899
– ident: CIT0057
  doi: 10.1080/10503307.2015.1053553
– ident: CIT0090
  doi: 10.1097/00005650-199603000-00003
– ident: CIT0019
  doi: 10.1002/da.22755
– ident: CIT0058
  doi: 10.1016/j.brat.2019.103438
– ident: CIT0062
  doi: 10.1016/j.ijforecast.2018.06.001
– ident: CIT0068
  doi: 10.1016/j.brat.2007.12.005
– ident: CIT0036
  doi: 10.1002/jclp.20108
– ident: CIT0086
  doi: 10.1080/10503307.2013.856046
– volume: 2013
  start-page: 298183
  year: 2013
  ident: CIT0013
  publication-title: Evidence-Based Complementary and Alternative Medicine
– ident: CIT0079
  doi: 10.1016/j.conb.2019.02.006
– ident: CIT0074
  doi: 10.1159/000487893
– volume: 5
  start-page: 260
  issue: 3
  year: 1996
  ident: CIT0052
  publication-title: The Journal of Psychotherapy Practice and Research
– ident: CIT0059
  doi: 10.1037/1040-3590.18.2.133
– ident: CIT0032
  doi: 10.1001/jamapsychiatry.2016.1720
– volume-title: Fragebogen zu körperbezogenen Ängsten, Kognitionen und Vermeidung: AKV
  year: 2001
  ident: CIT0025
– ident: CIT0028
  doi: 10.1016/j.brat.2020.103596
– ident: CIT0076
– ident: CIT0006
  doi: 10.1016/0272-7358(88)90050-5
– ident: CIT0027
  doi: 10.1136/gut.2003.025080
– ident: CIT0063
  doi: 10.1371/journal.pone.0194889
– ident: CIT0018
  doi: 10.1037/a0013075
– ident: CIT0022
  doi: 10.1371/journal.pone.0083875
– ident: CIT0066
  doi: 10.1056/NEJMp1606181
– ident: CIT0011
  doi: 10.1002/da.22728
– ident: CIT0030
– volume-title: Hamburger Zwangsinventar – Kurzform (HZI-K)
  year: 1993
  ident: CIT0047
– ident: CIT0046
  doi: 10.1017/S2045796016000020
– ident: CIT0077
  doi: 10.1093/biomet/70.1.41
– ident: CIT0087
  doi: 10.1126/science.185.4157.1124
– ident: CIT0088
  doi: 10.1017/S0033291719003192
– volume-title: Das Inventar zur Erfassung interpersonaler Probleme (IIP-D). Handanweisung (2. Aufl.)
  year: 2000
  ident: CIT0039
– ident: CIT0080
  doi: 10.1055/s-0032-1321781
– ident: CIT0085
  doi: 10.1093/bioinformatics/btr597
– ident: CIT0002
  doi: 10.1038/nmeth.4438
– ident: CIT0012
  doi: 10.1145/1143844.1143865
– ident: CIT0054
  doi: 10.1080/10503307.2015.1079661
SSID ssj0017800
Score 2.5271769
Snippet Objective: This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend...
This study aims at developing a treatment selection algorithm using a combination of machine learning and statistical inference to recommend patients' optimal...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms Algorithms
Averages
Clinical decision making
Cognition
Cognitive behavioral therapy
Cognitive-behavioral factors
Data
Decision making
Inference
Machine learning
Medical decision making
Medical treatment
outcome prediction
outpatient psychotherapy
Outpatients
Patients
precision medicine
Psychodynamic therapy
Psychotherapy
random forest
Statistical inference
Statistics
Therapists
Training
variable selection
Title Personalized treatment selection in routine care: Integrating machine learning and statistical algorithms to recommend cognitive behavioral or psychodynamic therapy
URI https://www.tandfonline.com/doi/abs/10.1080/10503307.2020.1769219
https://www.ncbi.nlm.nih.gov/pubmed/32463342
https://www.proquest.com/docview/2474293236
https://www.proquest.com/docview/2407580573
Volume 31
WOSCitedRecordID wos000541292200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1468-4381
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017800
  issn: 1050-3307
  databaseCode: TFW
  dateStart: 19910701
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUoYtFNW0QfUx66lbpNlbEdP9hVVUdlg1hQdXaRx7HpSEyCkoAE39MP7bXjBFggFu0qUhI7jn1tH9vnnkvIZ22VUN6zzFAnM84ZzQxXeSa94p5WzsjKxGAT8vRULZf6LLEJu0SrDGtoPwhFxLE6dG6z6kZGHF7D2VsucXVH8ZYUmkbhT5z6Q9c8X_yazhGkygc9ggJHG0wy-vA8lcuj2emRdunTCDTORIvX_-Ef3pBXCYbC18FudsmWq_fIn7MRmd-5CiYKOnQxVg42IKxraBs01dpBoIwdw0lSm8AJEDaRl-kgBaK4ACwcBIelqAWNXzOXF0277n9vOugbCEvxDeZfwURhgnvRAGhaGDzEqtvabNYWBk-x27fk5-L7-bcfWYrikFku8j4wWQqhEXZ6YVcrXwiHEEUIg9BKUC-cmXNvFXOeK4dY0lsnfJXrXFOjtJvn7B3ZrpvafSAgnODaaM6stmhVc20ko95xUyhRqULPCB9br7RJ4jxE2rgs50kJdaz2MlR7map9Rr5Mya4GjY_nEuiHplH2cXPFD5FQSvZM2oPRjso0XHQl5RJxAaNMzMin6TF29HB6Y2rXXId3EN2poF85I-8H-5tKi6hYMMbpx38o2D55SQNfJ24vHZDtvr12h2TH3qCVtEfkhVyqo9i5_gJViSCr
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQQYILFPHa0scgcQ3K2o4f3KqKVauWFYdF9Ga5jl1W6iYomyK1v4cfyth50B6qHsopUpJxHHvs-WzPfEPIR-2UUCGwzFIvM84ZzSxXeSaD4oGW3srSpmQTcj5Xp6f6ZixMdKuMa-jQEUWkuToO7rgZPbjE4TUevuUSl3cUb0mhaWT-fFygrY38-YvZj_EkQaq8YyQocL5BmSGK565ibtmnW-yld2PQZItmL_7HX2yS5z0Shf1OdV6SR756Rf58G8D5tS9h9EKHdUqXg30IywqaGrW18hC9xj7DUU84gTYQVsk100Ofi-IcsHYQY5YSHTR-zV6c182y_blaQ1tDXI2vsPwSRi8m-McbAHUDXZBYeVXZ1dJBFyx29Zp8n31ZHBxmfSKHzHGRt9GZpRAakWcQ7uwsFMIjShHCIroSNAhvpzw4xXzgyiOcDM6LUOY619Qq7ac5e0M2qrry7wgIL7i2mjOnHSrWVFvJaPDcFkqUqtATwofuM65nOY_JNi7MtCdDHZrdxGY3fbNPyKdR7FdH83GfgL6pG6ZN-yuhS4Zi2D2y24MimX7GWBvKJUIDRpmYkA_jYxzr8QDHVr6-jO8gwFORwnJC3nYKONYWgbFgjNOtB1Rsjzw9XHw9MSdH8-P35BmN7jtpt2mbbLTNpd8hT9xv1JhmN42xv7suI-0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQQYgND_HolAIXiW1Qxnb8YIeAERVoNIsiurNcxy4jdZIqkyK138OHcu04gS6qLmAVKYkdx762j-1zzyXkjXZKqBBYYamXBeeMFparspBB8UBrb2VtU7AJuVyqoyO9ymzCbaZVxjV0GIQi0lgdO_dZHUZGHF7j2VspcXVH8ZYUmkbhz9sInUU08sPF9-kgQapyECSocLjBNKMTz3XZXJmeroiXXg9B01S0ePAffuIhuZ9xKLwfDOcRueWbx-TXaoTml76GiYMO2xQsB1sQ1g10Ldpq4yFyxt7BQZabwBkQNomY6SFHojgBLBxEj6UkBo1fs6cnbbfuf2y20LcQ1-IbzL-GicMEf1QDoO1gcBGrLxq7WTsYXMUunpBvi0-HHz4XOYxD4bgo-0hlqYRG3BmEOz4OlfCIUYSwiK0EDcLbOQ9OMR-48ggmg_Mi1KUuNbVK-3nJnpKdpm38LgHhBddWc-a0Q7OaaysZDZ7bSolaVXpG-Nh6xmWN8xhq49TMsxTqWO0mVrvJ1T4jb6dkZ4PIx00J9N-mYfq0uxKGUCiG3ZB2f7Qjk8eLraFcIjBglIkZeT09xp4ej29s49vz-A7COxUFLGfk2WB_U2kRFgvGON37h4K9IndXHxfm68Hyy3Nyj0buTtpq2ic7fXfuX5A77icaTPcy9bDfLZEinw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+treatment+selection+in+routine+care%3A+Integrating+machine+learning+and+statistical+algorithms+to+recommend+cognitive+behavioral+or+psychodynamic+therapy&rft.jtitle=Psychotherapy+research&rft.au=Schwartz%2C+Brian&rft.au=Cohen%2C+Zachary+D&rft.au=Rubel%2C+Julian+A&rft.au=Zimmermann%2C+Dirk&rft.date=2021&rft.eissn=1468-4381&rft.volume=31&rft.issue=1&rft.spage=33&rft_id=info:doi/10.1080%2F10503307.2020.1769219&rft_id=info%3Apmid%2F32463342&rft.externalDocID=32463342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-3307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-3307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-3307&client=summon