Variational time integrators

The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in de...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 60; no. 1; pp. 153 - 212
Main Authors: Lew, A., Marsden, J. E., Ortiz, M., West, M.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 07.05.2004
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.
AbstractList The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed-ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path-independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J-integral at the tip of a crack in a finite element mesh.
The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering interest. In particular, the conservation properties of both synchronous and asynchronous variational integrators (AVIs) are discussed in detail. We present selected numerical examples which demonstrate the excellent accuracy, conservation and convergence characteristics of AVIs. In these tests, AVIs are found to result in substantial speed‐ups, at equal accuracy, relative to explicit Newmark. A mathematical proof of convergence of the AVIs is also presented in this paper. Finally, we develop the subject of horizontal variations and configurational forces in discrete dynamics. This theory leads to exact path‐independent characterizations of the configurational forces acting on discrete systems. Notable examples are the configurational forces acting on material nodes in a finite element discretisation; and the J‐integral at the tip of a crack in a finite element mesh. Copyright © 2004 John Wiley & Sons, Ltd.
Author Marsden, J. E.
Ortiz, M.
Lew, A.
West, M.
Author_xml – sequence: 1
  givenname: A.
  surname: Lew
  fullname: Lew, A.
  organization: Graduate Aeronautical Laboratories 105-50, California Institute of Technology, Pasadena, CA 91125, U.S.A
– sequence: 2
  givenname: J. E.
  surname: Marsden
  fullname: Marsden, J. E.
  organization: Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, U.S.A
– sequence: 3
  givenname: M.
  surname: Ortiz
  fullname: Ortiz, M.
  email: ortiz@aero.caltech.edu
  organization: Graduate Aeronautical Laboratories 105-50, California Institute of Technology, Pasadena, CA 91125, U.S.A
– sequence: 4
  givenname: M.
  surname: West
  fullname: West, M.
  organization: Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, U.S.A
BookMark eNp90M1KAzEUhuEgFWyreAMuulJBpiaTZJIspdRWrFXEH3ATMplTiU5nNEnR3r2jFUFRV2dxHr7F20Gtqq4AoW2C-wTj9LCaQ19xuYbaBCuR4BSLFmo3H5VwJckG6oTwgDEhHNM22rkx3pno6sqUvejm0HNVhHtvYu3DJlqfmTLA1uftouvj4dVgnEzORyeDo0liWYZlUqicFJRlRMqcqRSDYLQorDFUAreQM4p5gWXGrMqNAkpmElRKjbEYW6oK2kW7q90nXz8vIEQ9d8FCWZoK6kXQqWRcCJ41cP9fSLBMiWIsUw3dW1Hr6xA8zPSTd3Pjlw3S76F0E0o3oRqZ_JDWxY8k0RtX_uIPVv7FlbD8a1ZPz4bf1l2I8PqljX_UmaCC69vpSF_cUSlO2Vhf0jfH9YgD
CitedBy_id crossref_primary_10_1002_nme_2588
crossref_primary_10_1016_j_jcp_2010_12_015
crossref_primary_10_1016_j_euromechsol_2007_02_002
crossref_primary_10_1063_1_3623585
crossref_primary_10_1145_3658179
crossref_primary_10_1007_s10483_016_2116_8
crossref_primary_10_1016_j_cma_2010_02_014
crossref_primary_10_1016_j_cma_2008_02_002
crossref_primary_10_1002_nme_2869
crossref_primary_10_1007_s00211_014_0659_4
crossref_primary_10_1007_s11044_023_09945_1
crossref_primary_10_1016_j_cma_2005_06_013
crossref_primary_10_1109_TAC_2023_3235908
crossref_primary_10_1109_TE_2007_900019
crossref_primary_10_1111_cgf_12941
crossref_primary_10_1016_j_physleta_2009_10_005
crossref_primary_10_1002_nme_4495
crossref_primary_10_1002_nme_7127
crossref_primary_10_1016_j_cma_2010_09_011
crossref_primary_10_1002_nme_3160
crossref_primary_10_1007_s10483_010_1358_6
crossref_primary_10_1109_TAC_2020_2965059
crossref_primary_10_1016_j_cma_2023_116145
crossref_primary_10_1002_nme_4516
crossref_primary_10_1109_TRO_2009_2032955
crossref_primary_10_1007_s11012_021_01335_1
crossref_primary_10_1080_02331934_2011_649283
crossref_primary_10_1016_j_apm_2024_115820
crossref_primary_10_1108_02644400910975414
crossref_primary_10_1016_j_cma_2007_06_002
crossref_primary_10_1137_140987821
crossref_primary_10_1145_3734518
crossref_primary_10_1016_j_camwa_2019_08_027
crossref_primary_10_1002_nme_7194
crossref_primary_10_1016_j_physd_2015_08_002
crossref_primary_10_1142_S2972458925500042
crossref_primary_10_1002_nme_6389
crossref_primary_10_1088_0305_4470_39_19_S02
crossref_primary_10_1002_nme_5174
crossref_primary_10_1016_j_cam_2011_12_021
crossref_primary_10_1088_0305_4470_39_19_S01
crossref_primary_10_1007_s11071_024_10305_7
crossref_primary_10_1007_s12648_024_03497_6
crossref_primary_10_1016_j_jcp_2022_111253
crossref_primary_10_1016_j_cma_2013_04_007
crossref_primary_10_1002_zamm_200700173
crossref_primary_10_1007_s10338_023_00456_2
crossref_primary_10_1111_j_1467_8659_2011_02046_x
crossref_primary_10_1137_140970719
crossref_primary_10_1016_j_cma_2018_08_025
crossref_primary_10_1016_j_automatica_2021_109842
crossref_primary_10_1016_j_apm_2024_115719
crossref_primary_10_1155_2012_718608
crossref_primary_10_1016_j_jsv_2014_08_017
crossref_primary_10_1002_zamm_201600062
crossref_primary_10_1016_j_cma_2012_11_004
crossref_primary_10_1016_j_jcp_2017_11_034
crossref_primary_10_1016_j_jsv_2022_117354
crossref_primary_10_1002_nme_2753
crossref_primary_10_1080_1468936042000269578
crossref_primary_10_1002_nme_1667
crossref_primary_10_1007_JHEP02_2021_127
crossref_primary_10_1137_090771648
crossref_primary_10_1007_s11012_013_9716_9
crossref_primary_10_1002_gamm_201410009
crossref_primary_10_1007_s10444_014_9394_8
crossref_primary_10_1016_j_cam_2009_12_029
crossref_primary_10_1016_j_jcp_2013_02_006
crossref_primary_10_1007_s10208_008_9030_4
crossref_primary_10_1111_cgf_13759
crossref_primary_10_1016_j_cma_2020_113067
crossref_primary_10_1016_j_cam_2015_10_018
crossref_primary_10_1002_nme_2361
crossref_primary_10_1016_j_ijsolstr_2010_12_018
crossref_primary_10_1016_j_compstruc_2016_05_010
crossref_primary_10_1016_j_jcp_2017_02_050
crossref_primary_10_1002_nme_2942
crossref_primary_10_1002_nme_3236
crossref_primary_10_1016_j_cma_2023_116333
crossref_primary_10_1109_TASE_2013_2267731
crossref_primary_10_1115_1_4040780
crossref_primary_10_1007_s00006_017_0793_z
crossref_primary_10_1109_TASE_2014_2333239
crossref_primary_10_1109_TVCG_2015_2459687
crossref_primary_10_1016_j_geomphys_2012_02_006
crossref_primary_10_1007_s11071_022_07597_y
crossref_primary_10_7227_IJMEE_41_1_6
crossref_primary_10_1016_j_enganabound_2010_06_010
crossref_primary_10_1002_nme_2271
crossref_primary_10_3390_math8081358
crossref_primary_10_1109_TVCG_2012_132
crossref_primary_10_1016_j_jcp_2008_05_017
crossref_primary_10_1007_s10569_008_9172_3
crossref_primary_10_1088_2041_8205_809_1_L9
crossref_primary_10_1016_j_compstruc_2013_11_013
crossref_primary_10_1016_j_physd_2011_09_006
crossref_primary_10_1155_2014_383680
crossref_primary_10_1137_070692571
crossref_primary_10_1016_j_finel_2014_10_003
crossref_primary_10_1007_s00332_022_09846_1
crossref_primary_10_1007_s00466_008_0286_y
crossref_primary_10_1111_cgf_12450
crossref_primary_10_1017_jfm_2019_341
crossref_primary_10_1016_j_jcp_2013_09_030
crossref_primary_10_2514_1_27790
crossref_primary_10_1002_nme_4285
crossref_primary_10_1088_1361_6544_aaa10e
crossref_primary_10_1016_j_cma_2022_115660
crossref_primary_10_1016_j_ifacol_2018_06_035
crossref_primary_10_1016_j_apm_2024_115759
crossref_primary_10_1111_cgf_14110
crossref_primary_10_1016_j_ijnonlinmec_2021_103683
crossref_primary_10_1002_zamm_201700221
crossref_primary_10_1016_j_cma_2017_08_020
crossref_primary_10_1016_j_jcp_2018_01_028
crossref_primary_10_1086_518641
crossref_primary_10_1016_j_euromechsol_2022_104858
crossref_primary_10_3390_ma18051080
crossref_primary_10_1002_nme_3266
crossref_primary_10_1002_nme_1880
crossref_primary_10_1002_nme_2210
crossref_primary_10_1145_3731195
crossref_primary_10_1007_s40722_014_0006_y
crossref_primary_10_1002_nme_3245
crossref_primary_10_1007_s11831_008_9024_z
crossref_primary_10_1196_annals_1311_002
crossref_primary_10_1016_j_matcom_2014_11_014
crossref_primary_10_1007_s00466_017_1397_0
crossref_primary_10_1016_j_cma_2005_06_027
crossref_primary_10_1017_fms_2016_17
crossref_primary_10_1093_imanum_drv062
crossref_primary_10_1007_s10569_018_9826_8
crossref_primary_10_1016_j_cma_2016_12_012
crossref_primary_10_1088_1751_8121_ac6240
crossref_primary_10_1002_nme_5552
crossref_primary_10_1016_j_jcp_2013_04_038
Cites_doi 10.1016/0045-7949(90)90059-B
10.1137/S1064827595282350
10.1063/1.532892
10.1007/s004660050248
10.1061/JMCEA3.0000098
10.4050/JAHS.46.290
10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
10.1088/0951-7715/3/2/001
10.1007/s004660050365
10.1137/S0036142997329797
10.1080/08927029108022142
10.1137/S0036142998349527
10.1007/978-0-387-21792-5
10.1016/0375-9601(88)90773-6
10.1007/s004660050324
10.1016/S0045-7825(01)00233-X
10.1016/0045-7949(89)90272-1
10.1007/BF00250778
10.1006/jcph.1994.1085
10.1016/0045-7825(92)90115-Z
10.1016/S0168-9274(97)00072-X
10.1007/s002200050505
10.1007/978-3-642-81589-8_29
10.1016/0045-7825(96)01009-2
10.1016/S0045-7825(99)00034-1
10.1115/1.3424304
10.1016/0021-9991(83)90014-1
10.1063/1.463137
10.1002/(SICI)1096-987X(19971115)18:14<1785::AID-JCC7>3.0.CO;2-G
10.1002/nme.361
10.1016/S0045-7825(00)00256-5
10.1063/1.478995
10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S
10.1007/978-3-662-05018-7
10.1016/0021-9991(77)90098-5
10.1016/0045-7825(79)90086-0
10.1016/0898-1221(86)90092-1
10.1006/jcph.1993.1220
10.1007/978-1-4612-1029-0
10.1137/S0036142999353594
10.1007/s00205-002-0212-y
ContentType Journal Article
Copyright Copyright © 2004 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2004 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7SM
DOI 10.1002/nme.958
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Earthquake Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Earthquake Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef
Earthquake Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 212
ExternalDocumentID 10_1002_nme_958
NME958
ark_67375_WNG_PZ387K4H_R
Genre article
GrantInformation_xml – fundername: NSF/ITR
  funderid: ACI‐0204932
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7SM
ID FETCH-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3
IEDL.DBID DRFUL
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221236300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Sun Nov 09 12:34:34 EST 2025
Wed Oct 01 14:22:43 EDT 2025
Sat Nov 29 01:43:47 EST 2025
Tue Nov 18 22:22:52 EST 2025
Wed Jan 22 16:41:18 EST 2025
Tue Nov 11 03:33:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4608-d9b1d346188b4920e743ddcaa38e5ceb4305d0864c9ba9e31f8e923aac00c39d3
Notes NSF/ITR - No. ACI-0204932
ArticleID:NME958
ark:/67375/WNG-PZ387K4H-R
istex:DE736C73CD745E6D8E3887AEC6758A5E8848920C
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.958
PQID 1082194469
PQPubID 23500
PageCount 60
ParticipantIDs proquest_miscellaneous_28457756
proquest_miscellaneous_1082194469
crossref_primary_10_1002_nme_958
crossref_citationtrail_10_1002_nme_958
wiley_primary_10_1002_nme_958_NME958
istex_primary_ark_67375_WNG_PZ387K4H_R
PublicationCentury 2000
PublicationDate 7 May 2004
PublicationDateYYYYMMDD 2004-05-07
PublicationDate_xml – month: 05
  year: 2004
  text: 7 May 2004
  day: 07
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2004
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Bottasso CL. A new look at finite elements in time: a variational interpretation of Runge-Kutta methods. Applied Numerical Mathematics 1997; 25(4):355-368.
Skeel RD, Srinivas K. Nonlinear stability analysis of area-preserving integrators. SIAM Journal on Numerical Analysis 2000; 38(1):129-148.
Knowles JK, Sternberg E. On a class of conservation laws in linearized and finite elastostatics. Archive for Rational Mechanics and Analysis 1972; 44(3):187-210.
Biesiadecki JJ, Skeel RD. Dangers of multiple time steps methods. Journal of Computational Physics 1993; 109:318-328.
Simo JC, Tarnow N, Wong KK. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering 1992; 100(1):63-116.
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations.Springer: Berlin, 2002.
Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering 2000; 49(10):1295-1325.
Smolinski P, Wu Y-S. An implicit multi-time step integration method for structural dynamics problems. Computational Mechanics 1998; 22:337-343.
Pandolfi A, Kane C, Marsden JE, Ortiz M. Time-discretized variational formulation of non-smooth frictional contact. International Journal for Numerical Methods in Engineering 2002; 53:1801-1829.
Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics and Analysis 2003; 2:85-146.
Marsden JE, Hughes TJR. Mathematical Foundations of Elasticity. Dover Publications: New York, 1994.
Leimkuhler BJ, Skeel RD. Symplectic numerical integrators in constrained Hamiltonian-systems. Journal of Computational Physics 1994; 112(1):117-125.
Bottasso CL, Bauchau OA. Multibody modeling of engage and disengage operations of helicopter rotors. Journal of the American Helicopter Society 2002; 46:290-300.
Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: Berlin, 2000.
Ge Z, Marsden JM. Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory. Physics Letters A 1988; 133:134-139.
Newmark N. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division 1959; 85(EM 3):67-94.
Channell PJ, Scovel C. Symplectic integration of Hamiltonian systems. Nonlinearity 1990; 3(2):231-259.
Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Computer Methods in Applied Mechanics and Engineering 2001; 190:2603-2649.
Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press: Cambridge, MA, 1987.
Kane C, Marsden JE, Ortiz M. Symplectic energy-momentum integrators. Journal of Mathematical Physics 1999; 40:3353-3371.
Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 6:871-880.
Grubmüller H, Heller H, Windemuth A, Schulten K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation 1991; 6:121-142.
Reich S. Backward error analysis for numerical integrators. SIAM Journal on Numerical Analysis 1999; 36(5):1549-1570.
Ryckaert J, Ciccotti G, Berendsen H. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics 1977; 23:327-341.
Kane C, Repetto EA, Ortiz M, Marsden JE. Finite element analysis of nonsmooth contact. Computer Methods in Applied Mechanics and Engineering 1999; 180:1-26.
Marsden JE, Patrick GW, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Communications in Mathematical Physics 1998; 199(2):351-395.
Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97:1990-2001.
Hughes TJR, Pister KS, Taylor RL. Implicit-explicit finite elements in nonlinear transient analysis. Computer Methods In Applied Mechanics And Engineering 1979; 17/18:159-182.
Abraham R, Marsden JE, Ratiu T. Manifolds, Tensor Analysis, and Applications (2nd edn). Springer: Berlin, 1988.
Anderson H. Rattle: a velocity version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52:24-34.
Gonzalez O, Simo JC. On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering 1996; 134(3-4):197-222.
Daniel WJT. Analysis and implementation of a new constant acceleration subcycling algorithm. International Journal for Numerical Methods in Engineering 1997; 40:2841-2855.
Izaguirre JA, Reich S, Skeel RD. Longer time steps for molecular dynamics. Journal of Chemical Physics 1999; 110(20):9853-9864.
Bishop TC, Skeel RD, Schulten K. Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. Journal of Computational Chemistry 1997; 18(14):1785-1791.
Marsden JE, Ratiu T. Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics. Springer: Berlin, Second Edition 1999.
Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: stability theory. Journal of Applied Mechanics 1978; 78:371-374.
Friedmann PP. Numerical-methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics. Computers and Structures 1990; 35(4):329-347.
Daniel WJT. The subcycled newmark algorithm. Computational Mechanics 1997; 20:272-281.
Skeel RD, Zhang GH, Schlick T. A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM Journal on Scientific Computing 1997; 18(1):203-222.
Sheng G, Fung TC, Fan SC. Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation. Computational Mechanics 1998; 21(6):449-460.
Borri M. Helicopter rotor dynamics by finite-element time approximation. Computers and Mathematics with Applications-Part A 1986; 12(1):149-160.
Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Computer Methods in Applied Mechanics and Engineering 2001; 190:6783-6824.
Knuth D. The Art of Computer Programming. Addison-Wesley: Reading, MA, 1998.
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Prentice-Hall: Englewood Cliffs, NJ, 1987.
1994; 112
1959; 85
1997; 40
2000; 49
1990; 35
1993; 109
1978; 78
2002; 53
1997; 20
1992; 100
1986; 12
1989; 6
1997; 25
1976
1998
1983; 52
1994
1992
1970
1999; 40
2002
1977; 23
1998; 199
1992; 97
1998; 21
1972; 44
1998; 22
1991; 6
1999
1990; 3
2000; 38
2000
2001; 190
2002; 46
1999; 180
1979; 17/18
1999; 36
1987
2003; 2
1997; 18
1999; 110
1985
1988; 133
1981
1996; 134
2001; 10
1988
Rice JR (e_1_2_1_52_2) 1985
Sanz‐Serna JM (e_1_2_1_12_2) 1992
Belytschko T (e_1_2_1_22_2) 1976
Marsden JE (e_1_2_1_37_2) 1994
e_1_2_1_41_2
e_1_2_1_45_2
e_1_2_1_20_2
e_1_2_1_43_2
Eshelby JD (e_1_2_1_53_2) 1970
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
Johnson C (e_1_2_1_2_2) 1987
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_4_2
e_1_2_1_56_2
e_1_2_1_33_2
e_1_2_1_10_2
e_1_2_1_31_2
Knuth D (e_1_2_1_38_2) 1998
e_1_2_1_16_2
Hughes TJR (e_1_2_1_3_2) 1987
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_8_2
e_1_2_1_18_2
e_1_2_1_39_2
Newmark N (e_1_2_1_30_2) 1959; 85
e_1_2_1_40_2
Gurtin ME (e_1_2_1_50_2) 2000
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
MacKay R (e_1_2_1_11_2) 1992
Marsden JE (e_1_2_1_7_2) 2001
e_1_2_1_29_2
e_1_2_1_55_2
e_1_2_1_5_2
e_1_2_1_34_2
e_1_2_1_32_2
e_1_2_1_51_2
e_1_2_1_15_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_9_2
References_xml – reference: Hughes TJR, Liu WK. Implicit-explicit finite elements in transient analysis: stability theory. Journal of Applied Mechanics 1978; 78:371-374.
– reference: Bottasso CL. A new look at finite elements in time: a variational interpretation of Runge-Kutta methods. Applied Numerical Mathematics 1997; 25(4):355-368.
– reference: Biesiadecki JJ, Skeel RD. Dangers of multiple time steps methods. Journal of Computational Physics 1993; 109:318-328.
– reference: Marsden JE, Ratiu T. Introduction to Mechanics and Symmetry, vol. 17 of Texts in Applied Mathematics. Springer: Berlin, Second Edition 1999.
– reference: Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering 2000; 49(10):1295-1325.
– reference: Bishop TC, Skeel RD, Schulten K. Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. Journal of Computational Chemistry 1997; 18(14):1785-1791.
– reference: Lew A, Marsden JE, Ortiz M, West M. Asynchronous variational integrators. Archive for Rational Mechanics and Analysis 2003; 2:85-146.
– reference: Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: Berlin, 2000.
– reference: Bottasso CL, Bauchau OA. Multibody modeling of engage and disengage operations of helicopter rotors. Journal of the American Helicopter Society 2002; 46:290-300.
– reference: Grubmüller H, Heller H, Windemuth A, Schulten K. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Molecular Simulation 1991; 6:121-142.
– reference: Marsden JE, Patrick GW, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Communications in Mathematical Physics 1998; 199(2):351-395.
– reference: Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations.Springer: Berlin, 2002.
– reference: Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Computer Methods in Applied Mechanics and Engineering 2001; 190:2603-2649.
– reference: Daniel WJT. The subcycled newmark algorithm. Computational Mechanics 1997; 20:272-281.
– reference: Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press: Cambridge, MA, 1987.
– reference: Sheng G, Fung TC, Fan SC. Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation. Computational Mechanics 1998; 21(6):449-460.
– reference: Borri M. Helicopter rotor dynamics by finite-element time approximation. Computers and Mathematics with Applications-Part A 1986; 12(1):149-160.
– reference: Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis Prentice-Hall: Englewood Cliffs, NJ, 1987.
– reference: Reich S. Backward error analysis for numerical integrators. SIAM Journal on Numerical Analysis 1999; 36(5):1549-1570.
– reference: Hughes TJR, Pister KS, Taylor RL. Implicit-explicit finite elements in nonlinear transient analysis. Computer Methods In Applied Mechanics And Engineering 1979; 17/18:159-182.
– reference: Ryckaert J, Ciccotti G, Berendsen H. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics 1977; 23:327-341.
– reference: Neal MO, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems. Computers and Structures 1989; 6:871-880.
– reference: Newmark N. A method of computation for structural dynamics. ASCE Journal of the Engineering Mechanics Division 1959; 85(EM 3):67-94.
– reference: Smolinski P, Wu Y-S. An implicit multi-time step integration method for structural dynamics problems. Computational Mechanics 1998; 22:337-343.
– reference: Knowles JK, Sternberg E. On a class of conservation laws in linearized and finite elastostatics. Archive for Rational Mechanics and Analysis 1972; 44(3):187-210.
– reference: Anderson H. Rattle: a velocity version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics 1983; 52:24-34.
– reference: Skeel RD, Zhang GH, Schlick T. A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications. SIAM Journal on Scientific Computing 1997; 18(1):203-222.
– reference: Izaguirre JA, Reich S, Skeel RD. Longer time steps for molecular dynamics. Journal of Chemical Physics 1999; 110(20):9853-9864.
– reference: Marsden JE, Hughes TJR. Mathematical Foundations of Elasticity. Dover Publications: New York, 1994.
– reference: Kane C, Marsden JE, Ortiz M. Symplectic energy-momentum integrators. Journal of Mathematical Physics 1999; 40:3353-3371.
– reference: Friedmann PP. Numerical-methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics. Computers and Structures 1990; 35(4):329-347.
– reference: Pandolfi A, Kane C, Marsden JE, Ortiz M. Time-discretized variational formulation of non-smooth frictional contact. International Journal for Numerical Methods in Engineering 2002; 53:1801-1829.
– reference: Skeel RD, Srinivas K. Nonlinear stability analysis of area-preserving integrators. SIAM Journal on Numerical Analysis 2000; 38(1):129-148.
– reference: Channell PJ, Scovel C. Symplectic integration of Hamiltonian systems. Nonlinearity 1990; 3(2):231-259.
– reference: Gonzalez O, Simo JC. On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering 1996; 134(3-4):197-222.
– reference: Leimkuhler BJ, Skeel RD. Symplectic numerical integrators in constrained Hamiltonian-systems. Journal of Computational Physics 1994; 112(1):117-125.
– reference: Simo JC, Tarnow N, Wong KK. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering 1992; 100(1):63-116.
– reference: Daniel WJT. Analysis and implementation of a new constant acceleration subcycling algorithm. International Journal for Numerical Methods in Engineering 1997; 40:2841-2855.
– reference: Kane C, Repetto EA, Ortiz M, Marsden JE. Finite element analysis of nonsmooth contact. Computer Methods in Applied Mechanics and Engineering 1999; 180:1-26.
– reference: Ge Z, Marsden JM. Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory. Physics Letters A 1988; 133:134-139.
– reference: Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics 1992; 97:1990-2001.
– reference: Abraham R, Marsden JE, Ratiu T. Manifolds, Tensor Analysis, and Applications (2nd edn). Springer: Berlin, 1988.
– reference: Knuth D. The Art of Computer Programming. Addison-Wesley: Reading, MA, 1998.
– reference: Armero F, Romero I. On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Computer Methods in Applied Mechanics and Engineering 2001; 190:6783-6824.
– volume: 36
  start-page: 1549
  issue: 5
  year: 1999
  end-page: 1570
  article-title: Backward error analysis for numerical integrators
  publication-title: SIAM Journal on Numerical Analysis
– volume: 46
  start-page: 290
  year: 2002
  end-page: 300
  article-title: Multibody modeling of engage and disengage operations of helicopter rotors
  publication-title: Journal of the American Helicopter Society
– volume: 17/18
  start-page: 159
  year: 1979
  end-page: 182
  article-title: Implicit‐explicit finite elements in nonlinear transient analysis
  publication-title: Computer Methods In Applied Mechanics And Engineering
– volume: 20
  start-page: 272
  year: 1997
  end-page: 281
  article-title: The subcycled newmark algorithm
  publication-title: Computational Mechanics
– start-page: 137
  year: 1992
  end-page: 193
– volume: 38
  start-page: 129
  issue: 1
  year: 2000
  end-page: 148
  article-title: Nonlinear stability analysis of area‐preserving integrators
  publication-title: SIAM Journal on Numerical Analysis
– start-page: 437
  year: 1992
  end-page: 449
– volume: 112
  start-page: 117
  issue: 1
  year: 1994
  end-page: 125
  article-title: Symplectic numerical integrators in constrained Hamiltonian‐systems
  publication-title: Journal of Computational Physics
– start-page: 673
  year: 1976
  end-page: 690
– start-page: 414
  year: 2000
  end-page: 441
– volume: 2
  start-page: 85
  year: 2003
  end-page: 146
  article-title: Asynchronous variational integrators
  publication-title: Archive for Rational Mechanics and Analysis
– volume: 100
  start-page: 63
  issue: 1
  year: 1992
  end-page: 116
  article-title: Exact energy‐momentum conserving algorithms and symplectic schemes for nonlinear dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1994
– volume: 53
  start-page: 1801
  year: 2002
  end-page: 1829
  article-title: Time‐discretized variational formulation of non‐smooth frictional contact
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1998
– volume: 44
  start-page: 187
  issue: 3
  year: 1972
  end-page: 210
  article-title: On a class of conservation laws in linearized and finite elastostatics
  publication-title: Archive for Rational Mechanics and Analysis
– volume: 134
  start-page: 197
  issue: 3–4
  year: 1996
  end-page: 222
  article-title: On the stability of symplectic and energy‐momentum algorithms for non‐linear Hamiltonian systems with symmetry
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 190
  start-page: 2603
  year: 2001
  end-page: 2649
  article-title: On the formulation of high‐frequency dissipative time‐stepping algorithms for nonlinear dynamics. Part I: low‐order methods for two model problems and nonlinear elastodynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 12
  start-page: 149
  issue: 1
  year: 1986
  end-page: 160
  article-title: Helicopter rotor dynamics by finite‐element time approximation
  publication-title: Computers and Mathematics with Applications—Part A
– volume: 180
  start-page: 1
  year: 1999
  end-page: 26
  article-title: Finite element analysis of nonsmooth contact
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 97
  start-page: 1990
  year: 1992
  end-page: 2001
  article-title: Reversible multiple time scale molecular dynamics
  publication-title: The Journal of Chemical Physics
– volume: 199
  start-page: 351
  issue: 2
  year: 1998
  end-page: 395
  article-title: Multisymplectic geometry, variational integrators, and nonlinear PDEs
  publication-title: Communications in Mathematical Physics
– start-page: 33
  year: 1985
  end-page: 56
– volume: 3
  start-page: 231
  issue: 2
  year: 1990
  end-page: 259
  article-title: Symplectic integration of Hamiltonian systems
  publication-title: Nonlinearity
– volume: 10
  year: 2001
– volume: 18
  start-page: 1785
  issue: 14
  year: 1997
  end-page: 1791
  article-title: Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics
  publication-title: Journal of Computational Chemistry
– volume: 109
  start-page: 318
  year: 1993
  end-page: 328
  article-title: Dangers of multiple time steps methods
  publication-title: Journal of Computational Physics
– volume: 78
  start-page: 371
  year: 1978
  end-page: 374
  article-title: Implicit‐explicit finite elements in transient analysis: stability theory
  publication-title: Journal of Applied Mechanics
– start-page: 572
  year: 1981
  end-page: 584
– volume: 49
  start-page: 1295
  issue: 10
  year: 2000
  end-page: 1325
  article-title: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 190
  start-page: 6783
  year: 2001
  end-page: 6824
  article-title: On the formulation of high‐frequency dissipative time‐stepping algorithms for nonlinear dynamics. Part II: second‐order methods
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1987
– year: 2000
– volume: 6
  start-page: 121
  year: 1991
  end-page: 142
  article-title: Generalized Verlet algorithm for efficient molecular dynamics simulations with long‐range interactions
  publication-title: Molecular Simulation
– volume: 35
  start-page: 329
  issue: 4
  year: 1990
  end-page: 347
  article-title: Numerical‐methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics
  publication-title: Computers and Structures
– start-page: 77
  year: 1970
  end-page: 115
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n‐alkanes
  publication-title: Journal of Computational Physics
– volume: 110
  start-page: 9853
  issue: 20
  year: 1999
  end-page: 9864
  article-title: Longer time steps for molecular dynamics
  publication-title: Journal of Chemical Physics
– volume: 22
  start-page: 337
  year: 1998
  end-page: 343
  article-title: An implicit multi‐time step integration method for structural dynamics problems
  publication-title: Computational Mechanics
– volume: 85
  start-page: 67
  issue: EM 3
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: ASCE Journal of the Engineering Mechanics Division
– volume: 18
  start-page: 203
  issue: 1
  year: 1997
  end-page: 222
  article-title: A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications
  publication-title: SIAM Journal on Scientific Computing
– volume: 25
  start-page: 355
  issue: 4
  year: 1997
  end-page: 368
  article-title: A new look at finite elements in time: a variational interpretation of Runge–Kutta methods
  publication-title: Applied Numerical Mathematics
– year: 2002
– year: 1988
– volume: 21
  start-page: 449
  issue: 6
  year: 1998
  end-page: 460
  article-title: Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation
  publication-title: Computational Mechanics
– volume: 52
  start-page: 24
  year: 1983
  end-page: 34
  article-title: Rattle: a velocity version of the shake algorithm for molecular dynamics calculations
  publication-title: Journal of Computational Physics
– volume: 6
  start-page: 871
  year: 1989
  end-page: 880
  article-title: Explicit–explicit subcycling with non‐integer time step ratios for structural dynamic systems
  publication-title: Computers and Structures
– volume: 40
  start-page: 2841
  year: 1997
  end-page: 2855
  article-title: Analysis and implementation of a new constant acceleration subcycling algorithm
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 133
  start-page: 134
  year: 1988
  end-page: 139
  article-title: Lie–Poisson integrators and Lie–Poisson Hamilton–Jacobi theory
  publication-title: Physics Letters A
– volume: 40
  start-page: 3353
  year: 1999
  end-page: 3371
  article-title: Symplectic energy‐momentum integrators
  publication-title: Journal of Mathematical Physics
– year: 1999
– ident: e_1_2_1_40_2
  doi: 10.1016/0045-7949(90)90059-B
– ident: e_1_2_1_32_2
  doi: 10.1137/S1064827595282350
– ident: e_1_2_1_54_2
  doi: 10.1063/1.532892
– ident: e_1_2_1_49_2
  doi: 10.1007/s004660050248
– start-page: 33
  volume-title: Fundamentals of Deformation and Fracture (Eshelby Memorial Symposium)
  year: 1985
  ident: e_1_2_1_52_2
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 1987
  ident: e_1_2_1_3_2
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: e_1_2_1_30_2
  article-title: A method of computation for structural dynamics
  publication-title: ASCE Journal of the Engineering Mechanics Division
  doi: 10.1061/JMCEA3.0000098
– ident: e_1_2_1_44_2
  doi: 10.4050/JAHS.46.290
– ident: e_1_2_1_29_2
  doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
– ident: e_1_2_1_55_2
– ident: e_1_2_1_4_2
  doi: 10.1088/0951-7715/3/2/001
– ident: e_1_2_1_24_2
  doi: 10.1007/s004660050365
– ident: e_1_2_1_36_2
  doi: 10.1137/S0036142997329797
– start-page: 673
  volume-title: Formulations and Computational Algorithms in Finite Element Analysis
  year: 1976
  ident: e_1_2_1_22_2
– ident: e_1_2_1_27_2
  doi: 10.1080/08927029108022142
– ident: e_1_2_1_33_2
  doi: 10.1137/S0036142998349527
– volume-title: Acta Numerica
  year: 2001
  ident: e_1_2_1_7_2
– ident: e_1_2_1_35_2
  doi: 10.1007/978-0-387-21792-5
– ident: e_1_2_1_8_2
  doi: 10.1016/0375-9601(88)90773-6
– volume-title: Mathematical Foundations of Elasticity
  year: 1994
  ident: e_1_2_1_37_2
– ident: e_1_2_1_41_2
  doi: 10.1007/s004660050324
– start-page: 77
  volume-title: Inelastic Behavior of Solids
  year: 1970
  ident: e_1_2_1_53_2
– ident: e_1_2_1_43_2
  doi: 10.1016/S0045-7825(01)00233-X
– ident: e_1_2_1_18_2
– ident: e_1_2_1_21_2
  doi: 10.1016/0045-7949(89)90272-1
– ident: e_1_2_1_51_2
  doi: 10.1007/BF00250778
– ident: e_1_2_1_15_2
  doi: 10.1006/jcph.1994.1085
– ident: e_1_2_1_31_2
  doi: 10.1016/0045-7825(92)90115-Z
– ident: e_1_2_1_34_2
  doi: 10.1016/S0168-9274(97)00072-X
– ident: e_1_2_1_19_2
  doi: 10.1007/s002200050505
– ident: e_1_2_1_23_2
  doi: 10.1007/978-3-642-81589-8_29
– ident: e_1_2_1_9_2
  doi: 10.1016/0045-7825(96)01009-2
– start-page: 137
  volume-title: The Dynamics of Numerics and the Numerics of Dynamics
  year: 1992
  ident: e_1_2_1_11_2
– ident: e_1_2_1_16_2
  doi: 10.1016/S0045-7825(99)00034-1
– ident: e_1_2_1_25_2
  doi: 10.1115/1.3424304
– ident: e_1_2_1_14_2
  doi: 10.1016/0021-9991(83)90014-1
– ident: e_1_2_1_28_2
  doi: 10.1063/1.463137
– ident: e_1_2_1_46_2
  doi: 10.1002/(SICI)1096-987X(19971115)18:14<1785::AID-JCC7>3.0.CO;2-G
– start-page: 437
  volume-title: Computational Ordinary Differential Equations
  year: 1992
  ident: e_1_2_1_12_2
– ident: e_1_2_1_5_2
– ident: e_1_2_1_17_2
  doi: 10.1002/nme.361
– ident: e_1_2_1_42_2
  doi: 10.1016/S0045-7825(00)00256-5
– ident: e_1_2_1_45_2
  doi: 10.1063/1.478995
– ident: e_1_2_1_48_2
  doi: 10.1002/(SICI)1097-0207(19970815)40:15<2841::AID-NME193>3.0.CO;2-S
– ident: e_1_2_1_10_2
  doi: 10.1007/978-3-662-05018-7
– ident: e_1_2_1_13_2
  doi: 10.1016/0021-9991(77)90098-5
– volume-title: Configurational Forces as Basic Concepts of Continuum Physics
  year: 2000
  ident: e_1_2_1_50_2
– ident: e_1_2_1_26_2
  doi: 10.1016/0045-7825(79)90086-0
– ident: e_1_2_1_39_2
  doi: 10.1016/0898-1221(86)90092-1
– ident: e_1_2_1_47_2
  doi: 10.1006/jcph.1993.1220
– ident: e_1_2_1_56_2
  doi: 10.1007/978-1-4612-1029-0
– ident: e_1_2_1_6_2
  doi: 10.1137/S0036142999353594
– volume-title: The Art of Computer Programming
  year: 1998
  ident: e_1_2_1_38_2
– volume-title: Numerical Solution of Partial Differential Equations by the Finite Element Method
  year: 1987
  ident: e_1_2_1_2_2
– ident: e_1_2_1_20_2
  doi: 10.1007/s00205-002-0212-y
SSID ssj0011503
Score 2.2450445
Snippet The purpose of this paper is to review and further develop the subject of variational integration algorithms as it applies to mechanical systems of engineering...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 153
SubjectTerms Accuracy
Algorithms
Conservation
Convergence
discrete mechanics
elastodynamics
Finite element method
geometric integration
Integrators
Mathematical analysis
Mathematical models
multi-time-step
subcycling
variational integrators
Title Variational time integrators
URI https://api.istex.fr/ark:/67375/WNG-PZ387K4H-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.958
https://www.proquest.com/docview/1082194469
https://www.proquest.com/docview/28457756
Volume 60
WOSCitedRecordID wos000221236300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9080Ef_BarUyuIb9W2aZbkUdQ5UIeIX_gS0iQFUTdZp_jne2m7MhFB8KmUXiDc5ZLf5a6_A9hjlsTCaBMQm1KXZswCwbSrBMhoRmwmbFFEc3fBej3-8CCuJlp9lfwQ9YWb84xiv3YOrtL8cII09NUeCMqnoRnjqk0a0Dy57txe1CkERDpkXN9BBY_KP2bd4MNq6LejqOm0-vkNZ06i1eK46Sz8Y6KLMF9hTP-oXBRLMGX7y7BQ4U2_8uZ8GeYmyAjx7bJmcM1XoHWHQXR1Uei7BvT-mFhiMMxX4bZzenPcDapOCoFO2iEPjEgjQ5J2xHmaiDhEAxBjtFKEW6pt6ni_DAY3iRapEpZEGbeI_JTSYaiJMGQNGv1B366D3ybMKMQcOsF4VoRa4U5ruY2VTbWOqPZgf6xUqSuacdft4kWWBMmxRH1I1IcHfi34VjJr_BTZL6xSf1fDZ1eIxqi8753Jq0fC2XnSldce7I7NJtE9XM5D9e3gPXf8p7gnY8wrPNj5RQZPaMoYbXuwV9jxt-nI3uUpPjb-JrYJs2WVDw1C1oLGaPhut2BGf4ye8uF2tVq_AMYo7aA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB90V_Du4fw8rp4fFcS3artpNsmjqOuKu0XEL3wJaZKCeLd7bPW4P_8mbbasiCD4VEInEGYyyW8yk18A9pglHWG0iYjNqUszFpFg2lUCFLQgthC2KqK5HbAs4_f34tJXVbq7MDU_RHPg5jyjWq-dg7sD6cMZ1tDf9kBQPg_tFCcRbUH75Kp3M2hyCAh1yLTAgwqe1FdmXedD3_XVXtR2av33CmjOwtVqv-ktfWaky_DNo8zwqJ4WKzBnR6uw5BFn6P25XIWvM3SE2Bo2HK7lGmzeYhjtjwpD9wR9OKWWGE_KdbjpnV4f9yP_lkKk027MIyPyxJC0m3Cep6ITowmIMVopwi3VNnfMXwbDm1SLXAlLkoJbxH5K6TjWRBjyHVqj8cj-gLBLmFGIOnSKEa2ItcK11nLbUTbXOqE6gP2pVqX2ROPuvYtfsqZI7kjUh0R9BBA2gn9qbo23IvuVWZr_avLkStEYlXfZmbx8IJxdpH15FcDu1G4SHcRlPdTIjl9Kx4CKqzJGvSKAnXdkcI-mjNFuAHuVId8bjsyGp_jZ-JjYDiz2r4cDOTjPLn7Cl7rmh0Yx24TW8-TFbsGC_vv8WE62_dT9D__W8ZA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB60V8Q-2B8qrla7hdK3tbuXzSZ5FNuz0utyFFuLLyGbzIKod-W2Lf3zO9nNLVekIPi0hJ1AmMkk32QmXwD2BLKhctYlDCvu04x1ooT1lQA1rxnWCtsimouxKEt5eakmoarS34Xp-CH6AzfvGe167R0cr1x9sMQa-gc_Ki6fwiDnqiCnHByejc7HfQ6BoA5bFHhwJbPuyqzvfBC6PtiLBl6tdw-A5jJcbfeb0fr_jHQDXgSUGX_qpsUmPMHpFqwHxBkHf262YG2JjpBapz2Ha_MSti8ojA5HhbF_gj5eUEvM5s0rOB8dfft8nIS3FBKbF6lMnKoyx_Iik7LK1TAlEzDnrDFMIrdYeeYvR-FNblVlFLKslkjYzxibppYpx17DynQ2xTcQF0w4Q6jD5hTRqtQaWmtR4tBgZW3GbQT7C61qG4jG_XsXv3VHkTzUpA9N-ogg7gWvOm6Nv0X2W7P0_838ly9FE1x_L7_oyQ8mxUl-rM8i2F3YTZOD-KyHmeLspvEMqLQqU9SrIth5RIb2aC4ELyLYaw352HB0eXpEn7f_JrYDzyaHIz3-Wp68g-ddyQ9PUrENK9fzG3wPq_b2-mcz_xBm7j2gwvEL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+time+integrators&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Lew%2C+A.&rft.au=Marsden%2C+J.+E.&rft.au=Ortiz%2C+M.&rft.au=West%2C+M.&rft.date=2004-05-07&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=60&rft.issue=1&rft.spage=153&rft.epage=212&rft_id=info:doi/10.1002%2Fnme.958&rft.externalDBID=10.1002%252Fnme.958&rft.externalDocID=NME958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon