Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean

Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse mar...

Full description

Saved in:
Bibliographic Details
Published in:Conservation biology Vol. 38; no. 4; pp. e14256 - n/a
Main Authors: McClanahan, Tim R., Friedlander, Alan M., Wickel, Julien, Graham, Nicholas A. J., Bruggemann, J. Henrich, Guillaume, Mireille M. M., Chabanet, P., Porter, Sean, Schleyer, Michael H., Azali, M. Kodia, Muthiga, N. A.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.08.2024
Wiley
Subjects:
ISSN:0888-8892, 1523-1739, 1523-1739
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico Resumen Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva (r2=0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación.
AbstractList Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico Resumen Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva (r2=0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km 2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation ( r 2  = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r  = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25-km 2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r 2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment– species proxy and modeling approach can be considered among other important criteria for making conservation decisions. Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico Resumen Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de ∼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25‐km 2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva ( r 2 =0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación.
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from ∼1000 field sites, and the predictions were applied to all 7039 6.25‐km² reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r² = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority‐setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment–species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Author Porter, Sean
Azali, M. Kodia
Wickel, Julien
Friedlander, Alan M.
Muthiga, N. A.
Graham, Nicholas A. J.
Guillaume, Mireille M. M.
Schleyer, Michael H.
Chabanet, P.
Bruggemann, J. Henrich
McClanahan, Tim R.
Author_xml – sequence: 1
  givenname: Tim R.
  orcidid: 0000-0001-5821-3584
  surname: McClanahan
  fullname: McClanahan, Tim R.
  email: tmcclanahan@wcs.org
  organization: Wildlife Conservation Society
– sequence: 2
  givenname: Alan M.
  orcidid: 0000-0003-4858-006X
  surname: Friedlander
  fullname: Friedlander, Alan M.
  organization: University of Hawaiʿi
– sequence: 3
  givenname: Julien
  orcidid: 0000-0003-2717-6877
  surname: Wickel
  fullname: Wickel, Julien
  organization: Marex Ltd
– sequence: 4
  givenname: Nicholas A. J.
  orcidid: 0000-0002-0304-7467
  surname: Graham
  fullname: Graham, Nicholas A. J.
  organization: Lancaster University
– sequence: 5
  givenname: J. Henrich
  orcidid: 0000-0001-8764-3452
  surname: Bruggemann
  fullname: Bruggemann, J. Henrich
  organization: Laboratoire d'Excellence CORAIL
– sequence: 6
  givenname: Mireille M. M.
  orcidid: 0000-0001-7249-0131
  surname: Guillaume
  fullname: Guillaume, Mireille M. M.
  organization: Muséum National d'Histoire Naturelle – Sorbonne U – CNRS – IRD – UCN – UA
– sequence: 7
  givenname: P.
  orcidid: 0000-0001-7600-943X
  surname: Chabanet
  fullname: Chabanet, P.
  organization: Laboratoire d'Excellence CORAIL
– sequence: 8
  givenname: Sean
  orcidid: 0000-0001-8890-7982
  surname: Porter
  fullname: Porter, Sean
  organization: Oceanographic Research Institute
– sequence: 9
  givenname: Michael H.
  orcidid: 0000-0002-7578-8168
  surname: Schleyer
  fullname: Schleyer, Michael H.
  organization: Oceanographic Research Institute
– sequence: 10
  givenname: M. Kodia
  orcidid: 0000-0002-3454-3623
  surname: Azali
  fullname: Azali, M. Kodia
  organization: Wildlife Conservation Society
– sequence: 11
  givenname: N. A.
  orcidid: 0000-0003-3278-7410
  surname: Muthiga
  fullname: Muthiga, N. A.
  organization: Wildlife Conservation Society
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38545935$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04687415$$DView record in HAL
BookMark eNqF0kFv0zAUAGALDbFucOEHIEtcAC3Dju3EOY4KWKVKvYyz9eK8rJ5Su9gp1fgb_GHcZuMwIcjFUvy95_fsd0ZOfPBIyGvOLnn-PtrQuksuS1U9IzOuSlHwWjQnZMa01oXWTXlKzlK6Y4w1issX5FRoJVUj1Iz8usE0On9L-xCpDd6G2IG3SFsc94iebiN2zo7Y0bRF6zDR6OzaY0oXdAtpzMCF6Eb3E0YX_AUF39ENROcxb4URj7EQEWiHyd36I0vUeTquke7z8Rg9XfjOgacri-Bfkuc9DAlfPazn5NuXzzfz62K5-rqYXy0LKytWFaKUPbBa9aKvmdW9hLaTINq2E1IqUWMlGANWgrAM6x6kYMDrXopaaQBEcU7eT3nXMJjcRq763gRw5vpqaQ7_mKx0Lbn6wbN9N9nc0_ddLtpsXLI4DOAx7JIRXIlKNqys_k8Zl4zpUjSZvn1C78Iu-tx0VjonlKrSWb15ULt2g92fUh9fMQM2ARtDShF7Y914vOcxghsMZ-YwKOYwKOY4KDnkw5OQx6x_xXzCezfg_T-kma8-LaaY36iaznY
CitedBy_id crossref_primary_10_3389_fevo_2024_1450383
crossref_primary_10_1002_ecs2_70057
crossref_primary_10_3354_meps14852
Cites_doi 10.1371/journal.pone.0082898
10.3389/fmars.2022.841789
10.1002/aqc.2680
10.1088/1748-9326/ac5bb4
10.1111/jbi.13224
10.1080/14747731.2020.1761612
10.3390/d14090742
10.1093/bioinformatics/bty633
10.1016/j.jembe.2007.06.012
10.1016/bs.amb.2020.08.003
10.1017/S0030605315000848
10.1016/j.marpol.2020.104022
10.1201/9781420035933
10.1016/j.actao.2015.10.010
10.1371/journal.pone.0103000
10.1038/ncomms9208
10.1111/j.1523-1739.2004.00450.x
10.1073/pnas.2015094118
10.1111/ecog.05877
10.1016/j.tree.2006.09.010
10.1371/journal.pone.0023064
10.1038/s41586-018-0194-z
10.1038/ncomms3347
10.3354/esr01180
10.1007/BF00303637
10.1007/978-1-4614-6849-3
10.1111/j.1466-8238.2011.00656.x
10.1111/1440-1703.12096
10.1371/journal.pbio.3001640
10.1111/geb.12506
10.1111/jbi.12604
10.1002/aqc.3448
10.1016/j.marpol.2021.104478
10.1111/ddi.13770
10.1093/biomet/37.1-2.178
10.1126/science.1067728
10.1002/ecs2.1243
10.1111/0022-4146.00224
10.1098/rspb.2019.1506
10.1111/conl.12858
10.1126/sciadv.abj2271
10.1111/j.1538-4632.1995.tb00912.x
10.1038/nclimate2769
10.1126/science.abg4351
10.1038/s41597-022-01121-y
10.32614/RJ-2017-016
10.1641/B570707
10.1111/j.1365-2656.2008.01390.x
10.1111/ele.12316
10.1111/geb.12628
10.3354/meps12267
10.1038/s41467-022-32331-y
10.4324/9781849776608
10.3354/meps337001
10.1111/cobi.12430
10.1111/j.1365-2486.2011.02395.x
10.1111/j.1600-0587.2012.07348.x
10.1111/gcb.16083
10.1126/science.1127609
10.1023/A:1020093012502
10.1038/s41467-020-15863-z
10.1111/ele.12577
10.1080/08920753.2016.1116667
10.3390/rs61111579
10.1371/journal.pone.0019356
10.1016/j.biocon.2016.10.005
10.3354/meps14538
10.1111/j.1523-1739.2010.01606.x
10.3354/meps340221
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of Society for .
2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of Society for .
– notice: 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/cobi.14256
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1523-1739
EndPage n/a
ExternalDocumentID oai:HAL:hal-04687415v1
38545935
10_1111_cobi_14256
COBI14256
Genre article
Journal Article
GeographicLocations Indian Ocean
GeographicLocations_xml – name: Indian Ocean
GrantInformation_xml – fundername: Supporting the Policy Enabling Environment for Development (USAID SPEED)
– fundername: U.S. Department of the Interior's International Technical Assistance Program
– fundername: U.S. Agency for International Development
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACNCT
ACPOU
ACPRK
ACPVT
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADUKH
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SAMSI
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABSQW
ABUFD
ADXHL
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGUYK
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4606-324fa075f3f70c8f4abd4a3bbd344537e6300a02a3c0e7fa430a17f43758aaee3
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001192226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-8892
1523-1739
IngestDate Tue Oct 14 20:36:35 EDT 2025
Fri Sep 05 17:27:47 EDT 2025
Thu Oct 02 10:29:07 EDT 2025
Wed Aug 13 09:06:48 EDT 2025
Wed Feb 19 02:04:12 EST 2025
Sat Nov 29 06:57:38 EST 2025
Tue Nov 18 22:40:39 EST 2025
Wed Jan 22 17:18:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords planeación espacial marina
África
spatial modeling
factores ambientales
Africa
biodiversity proxy
marine spatial planning
taxa richness
riqueza de taxones
environmental drivers
modelo espacial
especies representantes
Africa biodiversity proxy environmental drivers marine spatial planning taxa richness spatial modeling
Language English
License Attribution
2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4606-324fa075f3f70c8f4abd4a3bbd344537e6300a02a3c0e7fa430a17f43758aaee3
Notes Number and spatial resolution of areas prioritized for conservation were greatly increased by predictions from an environment–taxa proxy model.
Article impact statement
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7600-943X
0000-0003-3278-7410
0000-0002-7578-8168
0000-0001-5821-3584
0000-0002-0304-7467
0000-0001-8890-7982
0000-0001-8764-3452
0000-0002-3454-3623
0000-0003-2717-6877
0000-0001-7249-0131
0000-0003-4858-006X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14256
PMID 38545935
PQID 3083644568
PQPubID 36794
PageCount 25
ParticipantIDs hal_primary_oai_HAL_hal_04687415v1
proquest_miscellaneous_3153649026
proquest_miscellaneous_3014008239
proquest_journals_3083644568
pubmed_primary_38545935
crossref_citationtrail_10_1111_cobi_14256
crossref_primary_10_1111_cobi_14256
wiley_primary_10_1111_cobi_14256_COBI14256
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References 2022; 375
2012; 60
2013; 4
2021; 128
2007; 340
2016; 72
2008; 77
2022; 20
2020; 11
2018; 45
2011; 17
2017; 9
2001; 41
2022; 28
2019; 286
1950; 37
2021; 31
2007; 337
2023; 29
1995; 27
2015; 42
2021; 118
2020a
1984
2011; 25
2014; 17
2014; 9
2007; 22
2014; 6
2012; 21
2016; 44
2015; 6
2016; 19
2012
2017; 26
2011
2010
2002; 295
2019; 35
2020b; 119
2022; 47
2016; 50
2020; 35
2004
2016; 204
2002
2006; 313
2011; 6
2007; 57
2016; 6
2016; 7
2013; 36
2022; 2022
2015; 29
2004; 18
2022
2021
2020
2018; 558
2021; 18
2022; 8
2002; 65
2007; 350
2022; 9
2022; 13
2022; 14
2018
2022; 15
1994; 13
2017; 580
2015
2013
2024; 730
2016; 26
2016; 25
2022; 17
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Friedlander A. M. (e_1_2_6_23_1) 2012; 60
e_1_2_6_19_1
Bullock R. (e_1_2_6_13_1) 2021
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
R Core Team (e_1_2_6_66_1) 2021
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Obura D. O. (e_1_2_6_59_1) 2012
Everett B. (e_1_2_6_21_1) 2015
Burke L. (e_1_2_6_14_1) 2011
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
Eastern African Marine Ecoregion (EAME) (e_1_2_6_18_1) 2004
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
Van der Elst R. (e_1_2_6_80_1) 2015
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – year: 2011
– volume: 4
  start-page: 2347
  year: 2013
  article-title: Marine protected area improves yield without disadvantaging fishers
  publication-title: Nature Communications
– volume: 65
  start-page: 209
  year: 2002
  end-page: 214
  article-title: Coral reef fish assessment in the ‘coral triangle’ of southeastern Asia
  publication-title: Environmental Biology of Fishes
– volume: 6
  year: 2011
  article-title: Global gradients of coral exposure to environmental stresses and implications for local management
  publication-title: PLoS ONE
– volume: 50
  start-page: 27
  year: 2016
  end-page: 35
  article-title: Marine protection targets: An updated assessment of global progress
  publication-title: Oryx
– volume: 9
  year: 2014
  article-title: Global priorities for marine biodiversity conservation
  publication-title: PLoS ONE
– volume: 7
  year: 2016
  article-title: Partitioning scleractinian coral diversity across reef sites and regions in the Western Indian Ocean
  publication-title: Ecosphere
– year: 2021
– volume: 29
  start-page: 1324
  issue: 11
  year: 2023
  end-page: 1340
  article-title: Local heterogeneity of coral reef diversity and environmental stress provides opportunities for small‐scale conservation
  publication-title: Diversity and Distributions
– volume: 128
  year: 2021
  article-title: Marine reserve more sustainable than gear restriction in maintaining long‐term coral reef fisheries yields
  publication-title: Marine Policy
– volume: 18
  start-page: 1087
  year: 2021
  end-page: 1104
  article-title: ‘The economy’ as if people mattered: Revisiting critiques of economic growth in a time of crisis
  publication-title: Globalizations
– volume: 337
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Western Indian Ocean coral communities: Bleaching responses and susceptibility to extinction
  publication-title: Marine Ecology Progress Series
– volume: 18
  start-page: 76
  year: 2004
  end-page: 85
  article-title: Usefulness of the umbrella species concept as a conservation tool
  publication-title: Conservation Biology
– volume: 41
  start-page: 411
  year: 2001
  end-page: 432
  article-title: Testing for local spatial autocorrelation in the presence of global autocorrelation
  publication-title: Journal of Regional Science
– year: 2018
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
– volume: 119
  year: 2020b
  article-title: Wilderness and conservation policies needed to avoid a coral reef fisheries crisis
  publication-title: Marine Policy
– volume: 286
  year: 2019
  article-title: Ecological constraints coupled with deep‐time habitat dynamics predict the latitudinal diversity gradient in reef fishes
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 28
  start-page: 4509
  issue: 15
  year: 2022
  end-page: 4522
  article-title: Present and future bright and dark spots for coral reefs through climate change
  publication-title: Global Change Biology
– volume: 26
  start-page: 1177
  year: 2017
  end-page: 1189
  article-title: Scale dependence of environmental controls on the functional diversity of coral reef fish communities
  publication-title: Global Ecology and Biogeography
– volume: 19
  start-page: 351
  year: 2016
  end-page: 360
  article-title: How accessible are coral reefs to people? A global assessment based on travel time
  publication-title: Ecology Letters
– volume: 44
  start-page: 1
  year: 2016
  end-page: 20
  article-title: Establishment of community managed fisheries’ closures in Kenya: Early evolution of the movement
  publication-title: Coastal Management
– volume: 42
  start-page: 2414
  year: 2015
  end-page: 2426
  article-title: Biogeography versus resource management: How do they compare when prioritizing the management of coral reef fish in the south‐western Indian Ocean?
  publication-title: Journal of Biogeography
– volume: 37
  start-page: 178
  year: 1950
  end-page: 181
  article-title: A test for the serial independence of residuals
  publication-title: Biometrika
– volume: 17
  start-page: 2023
  year: 2011
  end-page: 2032
  article-title: Associations between climate stress and coral reef diversity in the Western Indian Ocean
  publication-title: Global Change Biology
– volume: 17
  year: 2022
  article-title: Fisheries yields and species declines in coral reefs
  publication-title: Environmental Research Letters
– volume: 47
  start-page: 297
  year: 2022
  end-page: 331
  article-title: Marine turtles of the African east coast: Current knowledge and priorities for conservation and research
  publication-title: Endangered Species Research
– volume: 6
  start-page: 11579
  year: 2014
  end-page: 11606
  article-title: Reef‐scale thermal stress monitoring of coral ecosystems: New 5‐km global products from NOAA coral reef watch
  publication-title: Remote Sensing
– year: 2022
– volume: 45
  start-page: 1355
  year: 2018
  end-page: 1366
  article-title: Thermal energy and stress properties as the main drivers of regional distribution of coral species richness in the Indian Ocean
  publication-title: Journal of Biogeography
– year: 2004
– volume: 72
  start-page: 62
  year: 2016
  end-page: 71
  article-title: Coral reef monitoring in the Iles Eparses, Mozambique Channel (2011–2013)
  publication-title: Acta Oecologica
– volume: 35
  start-page: 315
  year: 2020
  end-page: 326
  article-title: Global distribution of coral diversity: Biodiversity knowledge gradients related to spatial resolution
  publication-title: Ecological Research
– volume: 9
  start-page: 321
  year: 2022
  article-title: The Important Marine Mammal Area network: A tool for systematic spatial planning in response to the marine mammal habitat conservation crisis
  publication-title: Frontiers in Marine Science
– volume: 558
  start-page: 396
  year: 2018
  end-page: 400
  article-title: Loss of coral reef growth capacity to track future increases in sea level
  publication-title: Nature
– volume: 6
  year: 2011
  article-title: Global diversity hotspots and conservation priorities for sharks
  publication-title: PLoS ONE
– volume: 13
  start-page: 4774
  year: 2022
  article-title: A functional vulnerability framework for biodiversity conservation
  publication-title: Nature Communications
– year: 2015
– volume: 35
  start-page: 526
  year: 2019
  end-page: 528
  article-title: ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R
  publication-title: Bioinformatics
– volume: 9
  year: 2014
  article-title: Towards a network of locally managed marine areas (LMMAs) in the Western Indian Ocean
  publication-title: PLoS ONE
– volume: 204
  start-page: 333
  year: 2016
  end-page: 339
  article-title: Global and regional priorities for marine biodiversity protection
  publication-title: Biological Conservation
– volume: 13
  start-page: 231
  year: 1994
  end-page: 241
  article-title: Kenyan coral reef lagoon fish: Effects of fishing, substrate complexity, and sea urchins
  publication-title: Coral Reefs
– volume: 6
  start-page: 8208
  year: 2015
  article-title: Integrating regional conservation priorities for multiple objectives into national policy
  publication-title: Nature Communications
– volume: 27
  start-page: 286
  year: 1995
  end-page: 306
  article-title: Local spatial autocorrelation statistics: distributional issues and an application
  publication-title: Geographical Analysis
– volume: 9
  start-page: 20
  year: 2022
  article-title: A global coral‐bleaching database, 1980–2020
  publication-title: Scientific Data
– volume: 2022
  issue: 6
  year: 2022
  article-title: Species distribution models rarely predict the biology of real populations
  publication-title: Ecography
– volume: 8
  year: 2022
  article-title: Process‐explicit models reveal the structure and dynamics of biodiversity patterns
  publication-title: Science Advances
– volume: 9
  start-page: 421
  year: 2017
  end-page: 436
  article-title: pdp: An R package for constructing partial dependence plots
  publication-title: The R Journal
– volume: 31
  start-page: 28
  year: 2021
  end-page: 42
  article-title: Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces
  publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems
– volume: 60
  start-page: 321
  year: 2012
  end-page: 338
  article-title: The shallow‐water fish assemblage of Isla del Coco National Park, Costa Rica: Structure and patterns in an isolated, predator‐dominated ecosystem
  publication-title: Revista de Biología Tropical
– volume: 36
  start-page: 27
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 29
  start-page: 409
  year: 2015
  end-page: 417
  article-title: Biomass‐based targets and the management of multispecies coral reef fisheries
  publication-title: Conservation Biology
– volume: 15
  year: 2022
  article-title: A global map of human pressures on tropical coral reefs
  publication-title: Conservation Letters
– volume: 340
  start-page: 221
  year: 2007
  end-page: 234
  article-title: Influence of instantaneous variation on estimates of coral reef fish populations and communities
  publication-title: Marine Ecology Progress Series
– year: 2010
– year: 2012
– volume: 6
  start-page: 83
  year: 2016
  end-page: 88
  article-title: Climate velocity and the future global redistribution of marine biodiversity
  publication-title: Nature Climate Change
– volume: 57
  start-page: 573
  year: 2007
  end-page: 583
  article-title: Marine ecoregions of the world: A bioregionalization of coastal and shelf areas
  publication-title: Bioscience
– volume: 11
  start-page: 2000
  year: 2020
  article-title: Changing role of coral reef marine reserves in a warming climate
  publication-title: Nature Communications
– volume: 21
  start-page: 272
  year: 2012
  end-page: 281
  article-title: Bio‐ORACLE: A global environmental dataset for marine species distribution modelling
  publication-title: Global Ecology and Biogeography
– year: 1984
– volume: 25
  start-page: 1466
  year: 2016
  end-page: 1476
  article-title: Evolutionary processes underlying latitudinal differences in reef fish biodiversity
  publication-title: Global Ecology and Biogeography
– volume: 350
  start-page: 3
  year: 2007
  end-page: 20
  article-title: Global seagrass distribution and diversity: A bioregional model
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 26
  start-page: 101
  year: 2016
  end-page: 125
  article-title: Building the future of MPAs—Lessons from history
  publication-title: Aquatic Conservation: Marine and Freshwater Ecosystems
– volume: 25
  start-page: 9
  year: 2011
  end-page: 20
  article-title: Assessing the value of the umbrella‐species concept for conservation planning with meta‐analysis
  publication-title: Conservation Biology
– volume: 118
  year: 2021
  article-title: Global warming is causing a more pronounced dip in marine species richness around the equator
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2002
– volume: 14
  start-page: 742
  year: 2022
  article-title: The impact of spatial delineation on the assessment of species recovery outcomes
  publication-title: Diversity
– volume: 20
  year: 2022
  article-title: The aesthetic value of reef fishes is globally mismatched to their conservation priorities
  publication-title: PLoS Biology
– volume: 313
  start-page: 58
  year: 2006
  end-page: 61
  article-title: Global biodiversity conservation priorities
  publication-title: Science
– year: 2020
– volume: 730
  start-page: 59
  year: 2024
  end-page: 78
  article-title: Modeling the spatial distribution of numbers of coral reef fish species and community types in the Western Indian Ocean faunal province
  publication-title: Marine Ecology Progress Series
– volume: 295
  start-page: 1280
  year: 2002
  end-page: 1284
  article-title: Marine biodiversity hotspots and conservation priorities for tropical reefs
  publication-title: Science
– volume: 17
  start-page: 1101
  year: 2014
  end-page: 1110
  article-title: Global mismatch between species richness and vulnerability of reef fish assemblages
  publication-title: Ecology Letters
– volume: 22
  start-page: 42
  year: 2007
  end-page: 47
  article-title: Ensemble forecasting of species distributions
  publication-title: Trends in Ecology & Evolution
– volume: 375
  start-page: 336
  year: 2022
  end-page: 340
  article-title: Protecting connectivity promotes successful biodiversity and fisheries conservation
  publication-title: Science
– start-page: 407
  year: 2015
  end-page: 436
– start-page: 230
  year: 2020a
  end-page: 291
– year: 2013
– volume: 580
  start-page: 169
  year: 2017
  end-page: 190
  article-title: Managing coral reef fish community biomass is a priority for biodiversity conservation in Madagascar
  publication-title: Marine Ecology Progress Series
– ident: e_1_2_6_70_1
  doi: 10.1371/journal.pone.0082898
– ident: e_1_2_6_77_1
  doi: 10.3389/fmars.2022.841789
– ident: e_1_2_6_82_1
  doi: 10.1002/aqc.2680
– ident: e_1_2_6_31_1
– ident: e_1_2_6_41_1
  doi: 10.1088/1748-9326/ac5bb4
– ident: e_1_2_6_6_1
  doi: 10.1111/jbi.13224
– ident: e_1_2_6_75_1
  doi: 10.1080/14747731.2020.1761612
– ident: e_1_2_6_25_1
  doi: 10.3390/d14090742
– ident: e_1_2_6_62_1
  doi: 10.1093/bioinformatics/bty633
– volume: 60
  start-page: 321
  year: 2012
  ident: e_1_2_6_23_1
  article-title: The shallow‐water fish assemblage of Isla del Coco National Park, Costa Rica: Structure and patterns in an isolated, predator‐dominated ecosystem
  publication-title: Revista de Biología Tropical
– ident: e_1_2_6_71_1
  doi: 10.1016/j.jembe.2007.06.012
– ident: e_1_2_6_44_1
  doi: 10.1016/bs.amb.2020.08.003
– ident: e_1_2_6_9_1
  doi: 10.1017/S0030605315000848
– ident: e_1_2_6_45_1
  doi: 10.1016/j.marpol.2020.104022
– ident: e_1_2_6_55_1
  doi: 10.1201/9781420035933
– ident: e_1_2_6_15_1
  doi: 10.1016/j.actao.2015.10.010
– volume-title: Assessing marine world heritage from an ecosystem perspective: The Western Indian Ocean
  year: 2012
  ident: e_1_2_6_59_1
– ident: e_1_2_6_69_1
  doi: 10.1371/journal.pone.0103000
– ident: e_1_2_6_8_1
  doi: 10.1038/ncomms9208
– ident: e_1_2_6_67_1
  doi: 10.1111/j.1523-1739.2004.00450.x
– volume-title: Offshore fisheries of the Southwest Indian Ocean: Their status and the impact on vulnerable species
  year: 2015
  ident: e_1_2_6_80_1
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.2015094118
– ident: e_1_2_6_35_1
  doi: 10.1111/ecog.05877
– ident: e_1_2_6_58_1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.tree.2006.09.010
– ident: e_1_2_6_38_1
  doi: 10.1371/journal.pone.0023064
– ident: e_1_2_6_64_1
  doi: 10.1038/s41586-018-0194-z
– ident: e_1_2_6_30_1
  doi: 10.1038/ncomms3347
– ident: e_1_2_6_79_1
  doi: 10.3354/esr01180
– ident: e_1_2_6_42_1
  doi: 10.1007/BF00303637
– ident: e_1_2_6_32_1
  doi: 10.1007/978-1-4614-6849-3
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1466-8238.2011.00656.x
– ident: e_1_2_6_33_1
  doi: 10.1111/1440-1703.12096
– ident: e_1_2_6_34_1
  doi: 10.1371/journal.pbio.3001640
– ident: e_1_2_6_72_1
  doi: 10.1111/geb.12506
– ident: e_1_2_6_43_1
  doi: 10.1111/jbi.12604
– ident: e_1_2_6_50_1
  doi: 10.1002/aqc.3448
– ident: e_1_2_6_46_1
  doi: 10.1016/j.marpol.2021.104478
– ident: e_1_2_6_47_1
  doi: 10.1111/ddi.13770
– ident: e_1_2_6_57_1
  doi: 10.1093/biomet/37.1-2.178
– ident: e_1_2_6_68_1
  doi: 10.1126/science.1067728
– ident: e_1_2_6_5_1
  doi: 10.1002/ecs2.1243
– ident: e_1_2_6_20_1
– ident: e_1_2_6_61_1
  doi: 10.1111/0022-4146.00224
– ident: e_1_2_6_24_1
  doi: 10.1098/rspb.2019.1506
– start-page: 407
  volume-title: Offshore fisheries of the southwest Indian Ocean: Their status and the impact on vulnerable species
  year: 2015
  ident: e_1_2_6_21_1
– ident: e_1_2_6_3_1
  doi: 10.1111/conl.12858
– ident: e_1_2_6_65_1
  doi: 10.1126/sciadv.abj2271
– ident: e_1_2_6_60_1
  doi: 10.1111/j.1538-4632.1995.tb00912.x
– ident: e_1_2_6_56_1
  doi: 10.1038/nclimate2769
– volume-title: Towards a Western Indian Ocean dugong conservation strategy: The status of dugongs in the Western Indian Ocean region and priority conservation actions
  year: 2004
  ident: e_1_2_6_18_1
– ident: e_1_2_6_11_1
– ident: e_1_2_6_22_1
  doi: 10.1126/science.abg4351
– volume-title: Reefs at risk revisited
  year: 2011
  ident: e_1_2_6_14_1
– ident: e_1_2_6_81_1
  doi: 10.1038/s41597-022-01121-y
– ident: e_1_2_6_28_1
  doi: 10.32614/RJ-2017-016
– ident: e_1_2_6_74_1
  doi: 10.1641/B570707
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-2656.2008.01390.x
– ident: e_1_2_6_63_1
  doi: 10.1111/ele.12316
– ident: e_1_2_6_83_1
  doi: 10.1111/geb.12628
– volume-title: The conservation status of marine biodiversity of the Western Indian Ocean
  year: 2021
  ident: e_1_2_6_13_1
– ident: e_1_2_6_53_1
  doi: 10.3354/meps12267
– ident: e_1_2_6_7_1
  doi: 10.1038/s41467-022-32331-y
– ident: e_1_2_6_73_1
  doi: 10.4324/9781849776608
– ident: e_1_2_6_48_1
  doi: 10.3354/meps337001
– ident: e_1_2_6_51_1
  doi: 10.1111/cobi.12430
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-2486.2011.02395.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: e_1_2_6_27_1
– ident: e_1_2_6_76_1
  doi: 10.1111/gcb.16083
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1127609
– ident: e_1_2_6_2_1
  doi: 10.1023/A:1020093012502
– ident: e_1_2_6_26_1
  doi: 10.1038/s41467-020-15863-z
– ident: e_1_2_6_39_1
  doi: 10.1111/ele.12577
– ident: e_1_2_6_40_1
  doi: 10.1080/08920753.2016.1116667
– ident: e_1_2_6_36_1
  doi: 10.3390/rs61111579
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0019356
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_6_66_1
– ident: e_1_2_6_29_1
  doi: 10.1016/j.biocon.2016.10.005
– ident: e_1_2_6_49_1
  doi: 10.3354/meps14538
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1523-1739.2010.01606.x
– ident: e_1_2_6_52_1
  doi: 10.3354/meps340221
SSID ssj0009514
Score 2.4750512
Snippet Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large‐scale predictions where data are...
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e14256
SubjectTerms Africa
Algorithms
Animals
Anthozoa - physiology
Biodiversity
biodiversity proxy
biomass
Clustering
Conservation
Conservation areas
Conservation of Natural Resources - methods
Coral Reefs
Corals
Criteria
ecoregions
Environment models
environmental drivers
Environmental Sciences
especies representantes
factores ambientales
Fish
Fishes - physiology
governance
Indian Ocean
Life Sciences
Machine learning
Marinas
Marine environment
Marine fishes
Marine invertebrates
Marine parks
Marine protected areas
marine spatial planning
modelo espacial
people
planeación espacial marina
Predictions
prioritization
Protected areas
Protected species
Reef fish
Reef fishes
Reefs
riqueza de taxones
Spatial data
spatial modeling
species
Species richness
Taxa
taxa richness
wildlife management
África
Title Testing for concordance between predicted species richness, past prioritization, and marine protected area designations in the western Indian Ocean
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.14256
https://www.ncbi.nlm.nih.gov/pubmed/38545935
https://www.proquest.com/docview/3083644568
https://www.proquest.com/docview/3014008239
https://www.proquest.com/docview/3153649026
https://hal.science/hal-04687415
Volume 38
WOSCitedRecordID wos001192226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1523-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009514
  issn: 0888-8892
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB5ytJCX3ofbNKjHS0sMtjVrydCXNM2SQEhCSWDfzFiWm4XGu-xuAvkd_cOdsb1uQkug9MUIeww6ZqRvpNE3AB8Y1VJpIwqFSyZE65KwKDHmARkYLDKHVUpNsglzdGRHo-xkBT4v78K0_BD9hptYRjNfi4FTMb9h5G5SjNnOeclehfU41lYSNyR4coNyt2X2Zh8vtDZLOnJSieP5_e-t5Wj1XIIh_0Sat4Frs_IMH_5fnR_Bgw5xqp1WRR7Diq-fwP02B-U1l_Ya3urrp_DzVBg36u-KcaxiN1n8UtEJ1cVyqelMTnUYoiq5n8kutuJJ9Fzmym01pfmCBcYTIUlqr3ZuK6pLdUFyv1B1fBD8LzFMVWUTONLuFqpxrRiGqo60QR3UorPq2Hmqn8HZcO90dz_scjaEDlMJo0uwIoYhla5M5GyFxENPuihKjTjQxgvFF0UJaRd5UxGyrsSmQs1-C5H3-jms1ZPavwRVWYqLskSd-IJhnqXEoU-NRjNwLsZBAB-XQ5e7jtBc8mr8yJeOjXR33nR3AO972WlL4_FXqXesAb2AMG_v7xzm8i7C1Ar4uooD2FwqSN7Z-zzXQvKNUssA3vaf2VLl-IVqP7kUGXZm5WAzu0OGF6AUM3aMA3jRKl9fHW0Z7Waa2_2p0bE7GpLvHn85aEqv_kX4NWwkjNna-MZNWFvMLv0buOeuFuP5bKuxLn6akd2C9a_fhmeHvwCrwinX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RAmovfEMNBZaPS1Et2d6JvT6WqlUiQtpDkHqzxus1jVScKEkr9Xf0D3fGdkwrUCXEzbLH0tr7ZufN7uxbgM_MaqkwAfmiJeOjsZGfFxhyh_QSzFOLZUz1YRPJaGROTtLjtjZH9sI0-hDdhJt4Rj1ei4PLhPQNL7fTfMKOzjF7De4jhxmBeYTHNzR3G2lvTvJ8Y9KoVSeVQp7f796KR2unUg35J9W8zVzr0HP4-D8b_QQetZxT7TUgeQr3XPUMHjanUF7y1UGtXH35HK7GorlR_VTMZBUnypKZCipUW82lZnNZ12GSqmSHJifZiofRUxktd9WMFks2mExFJqnZ3LmrqCrUL5IdhqpVhOB3iYmqKurSkWa-UE0qxURUtbINalAJatWRdVS9gB-HB-P9vt-e2uBbjKWQLsKSmIiUukwCa0ok7nzSeV5oxJ5OnIh8URCRtoFLSkJGS5iUqDlzIXJOv4T1alq5LVCloTAvCtSRy5noGYosujjRmPSsDbHnwc6q7zLbSprLyRpn2Sq1kd-d1b_bg0-d7awR8vir1UeGQGcg2tv9vWEm9wKMjdCvi9CD7RVCstbjF5kWmW-UVnrwoXvMvioLMFS56bnYcDorS5vpHTYcgmJMOTX24FWDvq452jDfTTV_95caZHd8SLZ_9HVQX73-F-P3sNEffx9mw8Ho2xvYjJjBNdWO27C-nJ-7t_DAXiwni_m72tWuAQaeKzo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTRt66fvhNm3VxyUlBtvS2vIxTbJk6bIJJYHczFiWmoXUu-xuAvkd_cOdsbVuQkug9CbsEegxI30jjb4B-ESoFisdYchcMqHSJgnLSsU0If1MlblRLsUm2UQ2HuvT0_zIx-bwW5iWH6I7cGPLaNZrNnA7q9w1KzfTckKGTnv2GqwrziLTg_W9b4OT0TXW3Zbcm9y8UOs88fykHMrzu_aNHWntjOMh_wSbN7Frs_kMHv5nsx_BA486xU6rJo_hjq2fwL02D-UVlfYb7uqrp_DzmFk36u-CsKwgV5l9U9YL4eO5xGzONzsEUwW_0SQ3W9BCesbr5baY4WJJApMpEyW1zzu3BdaV-IH8xlB4TgiqiwRVRdUEj7QnhmJSC4KiwhM3iGHNeisOjcX6GZwM9o93D0KftyE0KuVQukQ5JCjipMsio51Cmn6UZVlJpfoys0zzhVGC0kQ2c6hIX-LMKUm-C6K18jn06mltX4JwGuOyqpRMbElQT2NilE0zqbK-MbHqB7C1mrvCeFJzzq1xXqycGx7uohnuAD52srOWyuOvUh9IBToBZt8-2BkV_C1SqWYAdhkHsLnSkMLb_KKQTPStuJUBvO9-k7XyFQzWdnrBMuTQ8uVmfosMbUKpysk5DuBFq31dc6QmxJtL6vfnRslu6Uixe_hl2JRe_YvwO9g42hsUo-H462u4nxCEa8MdN6G3nF_YN3DXXC4ni_lbb2u_AL7SLFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+for+concordance+between+predicted+species+richness%2C+past+prioritization%2C+and+marine+protected+area+designations+in+the+western+Indian+Ocean&rft.jtitle=Conservation+biology&rft.au=McClanahan%2C+T+R&rft.au=Friedlander%2C+Alan+M.&rft.au=Wickel%2C+Julien&rft.au=Graham%2C+Nicholas+A.+J.&rft.date=2024-08-01&rft.issn=0888-8892&rft.volume=38&rft.issue=4+p.e14256-&rft_id=info:doi/10.1111%2Fcobi.14256&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon