Distribution-based detection of radiographic changes in pneumonia patterns: A COVID-19 case study
Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases li...
Gespeichert in:
| Veröffentlicht in: | Heliyon Jg. 10; H. 16; S. e35677 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
30.08.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 2405-8440, 2405-8440 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Although the classification of chest radiographs has long been an extensively researched topic, interest increased significantly with the onset of the COVID-19 pandemic. Existing results are promising; however, the radiological similarities between COVID-19 and other types of respiratory diseases limit the success of conventional image classification approaches that focus on single instances. This study proposes a novel perspective that conceptualizes COVID-19 pneumonia as a deviation from a normative distribution of typical pneumonia patterns. Using a population-based approach, our approach utilizes distributional anomaly detection. This method diverges from traditional instance-wise approaches by focusing on sets of scans instead of individual images. Using an autoencoder to extract feature representations, we present instance-based and distribution-based assessments of the separability between COVID-positive and COVID-negative pneumonia radiographs. The results demonstrate that the proposed distribution-based methodology outperforms conventional instance-based techniques in identifying radiographic changes associated with COVID-positive cases. This underscores its potential as an early warning system capable of detecting significant distributional shifts in radiographic data. By continuously monitoring these changes, this approach offers a mechanism for early identification of emerging health trends, potentially signaling the onset of new pandemics and enabling prompt public health responses. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2405-8440 2405-8440 |
| DOI: | 10.1016/j.heliyon.2024.e35677 |