Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion

Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotro...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science (American Association for the Advancement of Science) Ročník 379; číslo 6627; s. 89
Hlavní autori: Ren, Zhongshu, Gao, Lin, Clark, Samuel J, Fezzaa, Kamel, Shevchenko, Pavel, Choi, Ann, Everhart, Wes, Rollett, Anthony D, Chen, Lianyi, Sun, Tao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 06.01.2023
ISSN:1095-9203, 1095-9203
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-9203
1095-9203
DOI:10.1126/science.add4667