Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid

Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Sciences Jg. 12; H. 7; S. 3262
Hauptverfasser: Faghiri, Mohammad, Samizadeh, Shadi, Nikoofard, Amirhossein, Khosravy, Mahdi, Senjyu, Tomonobu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 23.03.2022
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages of RESs. In this regard, we adopted a new framework based on the new challenges in the multi-carrier energy micro-grid (MEMG). In the proposed method, a comprehensive MEMG was modeled that benefits from a large assortment of distributed energy resources (DERs), such as micro-turbines, fuel cells, wind turbines, and energy storage. Considering many DERs is necessary, because these resources could cover one another’s disadvantages, which have a great impact on the total cost of the MEMG and decrease the emission impacts of fossil-fuel-based units. Furthermore, waste power plants, inverters, rectifiers, and emission constraints are considered in the proposed method for modeling a practical MEMG. Additionally, for modeling the uncertainty of stochastic parameters, a model based on a multilayer neural network was used in this paper. The results of this study indicate that using a decentralized model, along with stochastic methods for predicting uncertainty, can reduce operational costs in micro-grids and computational complexity compared with optimal centralized programming methods. Finally, the equations and results obtained from the proposed method were evaluated by experiments.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app12073262