Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid
Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages...
Gespeichert in:
| Veröffentlicht in: | Applied Sciences Jg. 12; H. 7; S. 3262 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
23.03.2022
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages of RESs. In this regard, we adopted a new framework based on the new challenges in the multi-carrier energy micro-grid (MEMG). In the proposed method, a comprehensive MEMG was modeled that benefits from a large assortment of distributed energy resources (DERs), such as micro-turbines, fuel cells, wind turbines, and energy storage. Considering many DERs is necessary, because these resources could cover one another’s disadvantages, which have a great impact on the total cost of the MEMG and decrease the emission impacts of fossil-fuel-based units. Furthermore, waste power plants, inverters, rectifiers, and emission constraints are considered in the proposed method for modeling a practical MEMG. Additionally, for modeling the uncertainty of stochastic parameters, a model based on a multilayer neural network was used in this paper. The results of this study indicate that using a decentralized model, along with stochastic methods for predicting uncertainty, can reduce operational costs in micro-grids and computational complexity compared with optimal centralized programming methods. Finally, the equations and results obtained from the proposed method were evaluated by experiments. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app12073262 |