Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives

Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anoma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy Jg. 287; S. 116601
Hauptverfasser: Himeur, Yassine, Ghanem, Khalida, Alsalemi, Abdullah, Bensaali, Faycal, Amira, Abbes
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2021
Schlagworte:
ISSN:0306-2619, 1872-9118
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence. •Anomaly detection of energy consumption in buildings.•Taxonomy of artificial intelligence based anomaly detection methods.•Current trends and new perspectives of anomaly detection.•Non-intrusive anomaly detection.•Multimodal anomaly detection visualization techniques.
AbstractList Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence. •Anomaly detection of energy consumption in buildings.•Taxonomy of artificial intelligence based anomaly detection methods.•Current trends and new perspectives of anomaly detection.•Non-intrusive anomaly detection.•Multimodal anomaly detection visualization techniques.
Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.
ArticleNumber 116601
Author Ghanem, Khalida
Amira, Abbes
Himeur, Yassine
Alsalemi, Abdullah
Bensaali, Faycal
Author_xml – sequence: 1
  givenname: Yassine
  orcidid: 0000-0001-8904-5587
  surname: Himeur
  fullname: Himeur, Yassine
  email: yassine.himeur@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University, Doha, Qatar
– sequence: 2
  givenname: Khalida
  surname: Ghanem
  fullname: Ghanem, Khalida
  email: kghanem@cdta.dz
  organization: Division Telecom, Center for Development of Advanced Technologies (CDTA), Algiers, Algeria
– sequence: 3
  givenname: Abdullah
  surname: Alsalemi
  fullname: Alsalemi, Abdullah
  email: a.alsalemi@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University, Doha, Qatar
– sequence: 4
  givenname: Faycal
  surname: Bensaali
  fullname: Bensaali, Faycal
  email: f.bensaali@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University, Doha, Qatar
– sequence: 5
  givenname: Abbes
  surname: Amira
  fullname: Amira, Abbes
  email: abbes.amira@dmu.ac.uk
  organization: Institute of Artificial Intelligence, De Montfort University, Leicester, United Kingdom
BookMark eNqFkUFr3DAQhUVJoJu0f6Ho2EO8kWRbtksOWZY2CQR6Sc9iVhovWrySK8kJe8w_r1y3l1xymYHhvTfMNxfkzHmHhHzhbM0Zl9eHNYzoMOxPa8EEX3MuJeMfyIq3jSg6ztszsmIlk4WQvPtILmI8MJaVgq3I6yYk21ttYaDWJRwGu0enke4goqHg_BGGEzWYUCfrHfU9XZZR7V2cjuPfqXV0N9nBWLeP3-iGBny2-HJF9RQCukRTribmOEMdvtARQxznwGeMn8h5D0PEz__6Jfn14_vT9r54_Hn3sN08Frqqu1RUyFvdQgcgTdlwAcBZJTpdGTBNu2tLU9YaTIs9k0KCEBUgVLqpTa_72kB5Sb4uuWPwvyeMSR1t1PlgcOinqETdVGVVM86z9GaR6uBjDNgrbRPMh6YAdlCcqZm8Oqj_5NVMXi3ks12-sY_BHiGc3jfeLkbMHDLAoKK28zeMDZmWMt6-F_EHsu-n_w
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e21525
crossref_primary_10_1016_j_ememar_2025_101314
crossref_primary_10_1016_j_heliyon_2024_e25848
crossref_primary_10_1016_j_eswa_2025_126726
crossref_primary_10_1016_j_scs_2022_104059
crossref_primary_10_1109_ACCESS_2023_3330135
crossref_primary_10_3390_app12136395
crossref_primary_10_1016_j_jobe_2025_112156
crossref_primary_10_1109_TIA_2024_3425805
crossref_primary_10_1016_j_enbuild_2023_113877
crossref_primary_10_3390_a17080322
crossref_primary_10_1016_j_egyr_2021_12_066
crossref_primary_10_1088_1742_6596_2042_1_012015
crossref_primary_10_3390_app13095732
crossref_primary_10_3390_app15147682
crossref_primary_10_2478_rtuect_2025_0036
crossref_primary_10_1016_j_frl_2023_104958
crossref_primary_10_1142_S0129156425402979
crossref_primary_10_1016_j_eswa_2025_128461
crossref_primary_10_1016_j_enbuild_2022_112142
crossref_primary_10_3390_en14010237
crossref_primary_10_3390_en15010341
crossref_primary_10_1109_TQE_2024_3481280
crossref_primary_10_3390_app15158208
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_3390_app13158701
crossref_primary_10_1186_s13677_023_00529_0
crossref_primary_10_1016_j_engappai_2023_107350
crossref_primary_10_1016_j_apenergy_2024_123228
crossref_primary_10_1016_j_engappai_2023_107351
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_1016_j_indmarman_2023_12_019
crossref_primary_10_1007_s10207_023_00720_z
crossref_primary_10_1007_s00500_021_06151_z
crossref_primary_10_1080_17483107_2025_2488391
crossref_primary_10_32604_cmes_2023_027032
crossref_primary_10_1016_j_engappai_2022_105775
crossref_primary_10_1007_s10462_024_10827_x
crossref_primary_10_1007_s13198_021_01387_2
crossref_primary_10_1007_s10489_023_05205_z
crossref_primary_10_1016_j_energy_2022_125042
crossref_primary_10_1016_j_procir_2021_11_031
crossref_primary_10_1145_3652891
crossref_primary_10_1177_0958305X251349481
crossref_primary_10_1109_TII_2022_3141408
crossref_primary_10_1007_s12273_021_0872_x
crossref_primary_10_1016_j_enbuild_2023_113738
crossref_primary_10_1016_j_energy_2025_137508
crossref_primary_10_1016_j_eswa_2023_120605
crossref_primary_10_1007_s41403_022_00362_y
crossref_primary_10_1016_j_enbuild_2025_116129
crossref_primary_10_3390_s24237440
crossref_primary_10_1016_j_apenergy_2023_121597
crossref_primary_10_1002_eng2_12584
crossref_primary_10_1016_j_ifacol_2024_07_255
crossref_primary_10_1016_j_rser_2025_116130
crossref_primary_10_1109_TCE_2023_3328147
crossref_primary_10_1002_int_22404
crossref_primary_10_1016_j_energy_2023_126608
crossref_primary_10_1109_ACCESS_2025_3529295
crossref_primary_10_1016_j_jobe_2023_106923
crossref_primary_10_1016_j_egyr_2023_06_025
crossref_primary_10_1007_s00202_025_03170_z
crossref_primary_10_1016_j_asr_2024_10_001
crossref_primary_10_1016_j_enbuild_2023_112997
crossref_primary_10_1016_j_gr_2024_09_003
crossref_primary_10_3233_THC_232054
crossref_primary_10_1016_j_enbuild_2024_114559
crossref_primary_10_3390_s23229272
crossref_primary_10_1016_j_aei_2024_102868
crossref_primary_10_1016_j_enbuild_2024_113903
crossref_primary_10_1016_j_engappai_2023_107568
crossref_primary_10_71112_nchv3d08
crossref_primary_10_3390_en14227465
crossref_primary_10_1109_TCE_2024_3354189
crossref_primary_10_3390_bs14090755
crossref_primary_10_3390_a18030174
crossref_primary_10_1016_j_apenergy_2023_121244
crossref_primary_10_3390_su13158321
crossref_primary_10_1007_s11760_025_03879_1
crossref_primary_10_1002_cpe_6707
crossref_primary_10_1007_s11036_024_02396_8
crossref_primary_10_1016_j_compchemeng_2021_107619
crossref_primary_10_1051_e3sconf_202128801067
crossref_primary_10_1016_j_egyr_2025_05_074
crossref_primary_10_3390_en14010165
crossref_primary_10_3390_s22176639
crossref_primary_10_1016_j_enbuild_2023_113436
crossref_primary_10_1016_j_enbuild_2024_114803
crossref_primary_10_1016_j_segan_2022_100823
crossref_primary_10_3390_app13031666
crossref_primary_10_1080_17508975_2021_1922336
crossref_primary_10_1016_j_seta_2022_102365
crossref_primary_10_3390_app13106353
crossref_primary_10_1007_s41060_021_00265_1
crossref_primary_10_3390_en15176392
crossref_primary_10_1038_s41598_024_70729_4
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_3390_en15217981
crossref_primary_10_1016_j_apenergy_2024_124888
crossref_primary_10_1016_j_apenergy_2025_125458
crossref_primary_10_1016_j_segan_2023_101194
crossref_primary_10_1016_j_conbuildmat_2024_137330
crossref_primary_10_3390_en18102465
crossref_primary_10_1016_j_heliyon_2024_e34800
crossref_primary_10_1016_j_iot_2023_100697
crossref_primary_10_1016_j_nxsust_2024_100041
crossref_primary_10_1016_j_asoc_2021_107751
crossref_primary_10_1016_j_jobe_2023_106867
crossref_primary_10_1016_j_jobe_2024_109998
crossref_primary_10_1016_j_segan_2022_100938
crossref_primary_10_1145_3722213
crossref_primary_10_1016_j_procs_2025_03_115
crossref_primary_10_1016_j_enbuild_2022_112356
crossref_primary_10_1016_j_enbuild_2024_113964
crossref_primary_10_1016_j_enbuild_2024_114811
crossref_primary_10_1016_j_rineng_2024_102818
crossref_primary_10_1177_01436244241239290
crossref_primary_10_3390_en14248325
crossref_primary_10_3390_app13010314
crossref_primary_10_1016_j_ins_2024_121020
crossref_primary_10_3390_app11167716
crossref_primary_10_3390_e23081093
crossref_primary_10_1016_j_eswa_2022_117649
crossref_primary_10_1016_j_jclepro_2022_133714
crossref_primary_10_3390_en15249438
crossref_primary_10_1002_int_22876
crossref_primary_10_1007_s10994_023_06501_y
crossref_primary_10_1016_j_knosys_2023_110851
crossref_primary_10_1016_j_apenergy_2023_121705
crossref_primary_10_1016_j_egyr_2023_12_045
crossref_primary_10_1016_j_iot_2023_100908
crossref_primary_10_1177_01445987231221877
crossref_primary_10_1016_j_apenergy_2022_120339
crossref_primary_10_1007_s40684_023_00537_0
crossref_primary_10_1177_01423312211058560
crossref_primary_10_1016_j_cosrev_2024_100665
crossref_primary_10_1016_j_segan_2022_100805
crossref_primary_10_1016_j_enbuild_2023_113419
crossref_primary_10_1080_15487733_2025_2521181
crossref_primary_10_1016_j_rineng_2024_102170
crossref_primary_10_1016_j_solener_2023_05_006
crossref_primary_10_1016_j_techfore_2024_123523
crossref_primary_10_1016_j_enbuild_2021_111670
crossref_primary_10_1111_exsy_13767
crossref_primary_10_3390_w13050582
crossref_primary_10_1016_j_apenergy_2022_119911
crossref_primary_10_1016_j_eswa_2025_128978
crossref_primary_10_1155_2023_8676366
crossref_primary_10_1177_0958305X241258795
crossref_primary_10_1109_ACCESS_2025_3525726
crossref_primary_10_1016_j_enbuild_2023_113524
crossref_primary_10_1016_j_energy_2024_131314
crossref_primary_10_1007_s40313_022_00956_5
crossref_primary_10_1016_j_enbuild_2023_113760
crossref_primary_10_1016_j_apenergy_2023_122138
crossref_primary_10_1016_j_iot_2024_101175
crossref_primary_10_1016_j_nexus_2022_100167
crossref_primary_10_1016_j_renene_2024_120508
crossref_primary_10_3390_s22051925
crossref_primary_10_1016_j_jclepro_2021_127904
crossref_primary_10_1016_j_apenergy_2021_118314
crossref_primary_10_1016_j_enbuild_2022_112302
crossref_primary_10_1108_MD_04_2023_0618
crossref_primary_10_1016_j_eneco_2025_108785
crossref_primary_10_1016_j_energy_2022_123481
crossref_primary_10_1016_j_dib_2024_110769
crossref_primary_10_1007_s11356_023_29051_1
crossref_primary_10_32604_ee_2023_025218
crossref_primary_10_1016_j_icte_2023_06_002
crossref_primary_10_1016_j_rser_2025_116073
crossref_primary_10_3390_en15051837
crossref_primary_10_3390_s21248320
crossref_primary_10_3390_app132112029
crossref_primary_10_1016_j_iot_2025_101505
crossref_primary_10_1016_j_engappai_2023_107063
crossref_primary_10_3390_app15063361
crossref_primary_10_1109_JIOT_2023_3331351
crossref_primary_10_1007_s10489_025_06663_3
crossref_primary_10_1016_j_iref_2025_104490
crossref_primary_10_3390_ma16186105
crossref_primary_10_1051_e3sconf_202346900095
crossref_primary_10_3390_polym14061143
crossref_primary_10_3390_s23010001
crossref_primary_10_1016_j_ejps_2025_107239
crossref_primary_10_1109_JSEN_2024_3399193
crossref_primary_10_4018_IJAEIS_388736
crossref_primary_10_1109_TIM_2025_3550237
crossref_primary_10_1016_j_heliyon_2024_e27973
crossref_primary_10_1016_j_asoc_2023_110054
crossref_primary_10_1016_j_eneco_2024_107976
crossref_primary_10_3389_fbuil_2023_1334005
crossref_primary_10_3390_buildings14103136
crossref_primary_10_1016_j_enbuild_2023_113583
crossref_primary_10_3389_fenrg_2024_1346398
crossref_primary_10_3390_su16093627
crossref_primary_10_1109_ACCESS_2024_3400588
crossref_primary_10_1016_j_asoc_2024_111636
crossref_primary_10_1007_s10462_025_11108_x
crossref_primary_10_1080_13682199_2023_2202577
crossref_primary_10_1016_j_apenergy_2021_117694
crossref_primary_10_1080_00038628_2024_2350491
crossref_primary_10_3390_electronics11203315
crossref_primary_10_1016_j_jobe_2025_112418
crossref_primary_10_1155_2022_7823481
crossref_primary_10_1016_j_engappai_2022_105254
crossref_primary_10_1016_j_esr_2024_101600
crossref_primary_10_1016_j_buildenv_2023_110407
crossref_primary_10_1016_j_mseb_2023_117000
crossref_primary_10_1109_ACCESS_2024_3449642
crossref_primary_10_1016_j_rser_2022_112401
crossref_primary_10_1016_j_eneco_2024_108159
crossref_primary_10_1109_ACCESS_2024_3402997
crossref_primary_10_1016_j_eswa_2023_120565
crossref_primary_10_1016_j_inffus_2024_102601
crossref_primary_10_3390_en17174529
crossref_primary_10_1002_cpe_6316
crossref_primary_10_1016_j_esd_2025_101761
crossref_primary_10_1109_JSEN_2024_3426090
crossref_primary_10_1016_j_cmpb_2022_106706
crossref_primary_10_1049_wss2_12054
crossref_primary_10_1109_TPWRS_2022_3162391
crossref_primary_10_3233_AIC_230064
crossref_primary_10_1007_s12273_025_1242_x
crossref_primary_10_1016_j_rser_2023_113343
crossref_primary_10_3389_fenrg_2022_1043593
crossref_primary_10_1371_journal_pone_0286770
crossref_primary_10_1177_00368504241272722
crossref_primary_10_3389_fevo_2023_1267259
crossref_primary_10_1109_TSG_2023_3250521
crossref_primary_10_1080_17512549_2025_2513282
crossref_primary_10_3390_su15097458
crossref_primary_10_1016_j_egyr_2023_09_175
crossref_primary_10_3390_electronics11050693
crossref_primary_10_1016_j_apenergy_2022_119153
crossref_primary_10_1109_ACCESS_2024_3520490
crossref_primary_10_1007_s13369_023_08038_7
crossref_primary_10_1007_s11633_025_1554_4
crossref_primary_10_1016_j_asoc_2022_108838
crossref_primary_10_1016_j_energy_2023_129142
crossref_primary_10_1016_j_csa_2025_100105
crossref_primary_10_1016_j_enbuild_2021_111255
crossref_primary_10_1145_3724128
crossref_primary_10_3390_en16248057
crossref_primary_10_1016_j_jastp_2022_105979
crossref_primary_10_1109_ACCESS_2023_3284470
crossref_primary_10_1016_j_jclepro_2025_145533
crossref_primary_10_1016_j_enbuild_2022_112749
crossref_primary_10_1016_j_enbuild_2024_115177
crossref_primary_10_3390_systems11100519
crossref_primary_10_1016_j_iot_2024_101306
crossref_primary_10_3390_ma15010121
crossref_primary_10_1186_s42162_022_00230_7
crossref_primary_10_1007_s12652_022_04376_w
crossref_primary_10_1016_j_jclepro_2022_131242
crossref_primary_10_1016_j_jobe_2024_109354
crossref_primary_10_1016_j_eneco_2025_108231
crossref_primary_10_1038_s41598_023_49903_7
crossref_primary_10_3390_electronics13010102
crossref_primary_10_1155_2024_5699802
crossref_primary_10_1016_j_egyr_2025_05_003
crossref_primary_10_3390_admsci13020029
crossref_primary_10_1016_j_enbuild_2024_115069
crossref_primary_10_1007_s10311_024_01799_z
crossref_primary_10_3390_make6020045
crossref_primary_10_1109_ACCESS_2024_3402446
crossref_primary_10_3389_frsc_2023_1043657
crossref_primary_10_1049_gtd2_12997
crossref_primary_10_1016_j_iot_2024_101434
crossref_primary_10_1080_10447318_2024_2398324
crossref_primary_10_1007_s12053_025_10308_2
crossref_primary_10_1016_j_engfailanal_2024_108157
crossref_primary_10_1016_j_jobe_2025_111924
crossref_primary_10_4218_etrij_2023_0155
crossref_primary_10_1016_j_scs_2023_104870
crossref_primary_10_3390_buildings13020532
crossref_primary_10_1007_s11082_023_05781_x
crossref_primary_10_3390_machines11121082
crossref_primary_10_1016_j_jocs_2025_102685
crossref_primary_10_1016_j_asoc_2024_111275
crossref_primary_10_1002_pc_27194
crossref_primary_10_1016_j_jobe_2022_104505
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_1007_s11831_023_10054_7
crossref_primary_10_1108_SASBE_07_2023_0170
crossref_primary_10_1016_j_apenergy_2022_119864
crossref_primary_10_1016_j_apenergy_2023_121317
crossref_primary_10_1016_j_apenergy_2021_118136
crossref_primary_10_1007_s13369_022_07030_x
crossref_primary_10_1016_j_autcon_2024_105890
crossref_primary_10_1016_j_enbuild_2021_111823
crossref_primary_10_3390_s22176321
crossref_primary_10_1111_exsy_12959
crossref_primary_10_1016_j_jclepro_2024_143049
crossref_primary_10_1016_j_renene_2024_120350
crossref_primary_10_1016_j_iot_2023_101035
crossref_primary_10_1007_s10462_023_10441_3
crossref_primary_10_1109_ACCESS_2023_3347989
crossref_primary_10_1049_gtd2_12619
crossref_primary_10_1155_2024_5595459
crossref_primary_10_3390_electronics13081501
crossref_primary_10_3390_app112110376
crossref_primary_10_3390_su17188340
crossref_primary_10_1016_j_iot_2022_100568
crossref_primary_10_1016_j_enbuild_2022_112096
crossref_primary_10_1145_3649448
Cites_doi 10.3390/electronics9071164
10.1016/j.apenergy.2020.114877
10.5220/0007361704830490
10.1038/s42256-020-0186-1
10.1016/j.cag.2013.10.006
10.1016/j.apenergy.2019.01.061
10.1155/2017/8501683
10.1109/ACCESS.2018.2886583
10.1109/ACCESS.2019.2915641
10.1016/j.jclepro.2017.02.028
10.1155/2019/2686378
10.1109/ACCESS.2020.2966640
10.1016/j.apenergy.2020.115835
10.1016/j.inffus.2016.04.007
10.1016/j.egyr.2017.11.002
10.3390/jimaging4020036
10.1038/s41598-020-68662-3
10.1016/j.enbuild.2020.110404
10.3390/e17042367
10.3390/info8040151
10.1007/s12559-020-09764-y
10.1016/j.energy.2018.05.127
10.1155/2017/8782131
10.1007/s10618-014-0365-y
10.1109/ACCESS.2019.2943667
10.1016/j.patcog.2013.05.022
10.1108/17468801111119498
10.1109/ACCESS.2017.2771365
10.1186/s40537-018-0133-8
10.1016/j.adhoc.2020.102177
10.1016/j.aei.2013.03.002
10.3390/app9194193
10.1109/ACCESS.2019.2925322
10.1109/COMST.2019.2916583
10.1155/2019/4136874
10.1109/TII.2017.2776251
10.1016/j.scs.2020.102283
10.1109/TII.2017.2785963
10.1016/j.eswa.2016.03.002
10.1016/j.apenergy.2017.12.005
10.1016/j.scs.2019.101983
10.1109/JIOT.2019.2903312
10.3390/s19245370
10.1016/j.procs.2017.09.040
10.1016/j.ijforecast.2015.06.001
10.1038/s41591-020-1011-4
10.1016/j.future.2015.01.001
10.1109/TMM.2018.2871421
10.1007/s00779-017-1095-0
10.1109/LSP.2018.2889273
10.1016/j.ifacol.2018.08.439
10.1007/s10115-008-0145-3
10.1016/j.enbuild.2017.02.058
10.1016/j.buildenv.2020.107212
10.1016/j.jnca.2020.102659
10.1016/j.rser.2018.10.014
10.1145/335191.335388
10.1016/j.apenergy.2019.114145
10.1016/j.apenergy.2020.115739
10.1109/ACCESS.2018.2805908
10.1016/j.enbuild.2020.109807
10.1145/1081870.1081891
10.1109/JIOT.2019.2914937
10.1177/1550147717722499
10.1109/JSYST.2019.2899832
10.3390/s19112451
10.1016/j.jclepro.2020.121082
10.1016/j.scs.2020.102420
10.1109/TNSM.2016.2597125
10.1561/1500000066
10.1016/j.ijepes.2018.03.025
10.1016/j.knosys.2014.02.008
10.1049/iet-stg.2019.0081
10.3390/app10114011
10.1016/j.future.2020.05.041
10.1109/ACCESS.2019.2891315
10.3390/en13010130
10.1016/j.apenergy.2020.115872
10.1016/j.ijrefrig.2020.02.035
10.1109/TVCG.2014.2346922
10.1016/j.is.2018.05.007
10.1016/j.envsci.2020.07.003
10.1016/j.inffus.2020.07.003
10.1016/j.rser.2014.01.088
10.1080/23335777.2017.1386717
10.1016/j.enbuild.2017.11.039
10.1007/s00521-017-3128-z
10.1145/2133360.2133363
10.1016/S0167-8655(03)00003-5
10.1007/s10796-010-9266-9
10.14778/2994509.2994526
10.1002/stc.2296
10.1109/TVCG.2017.2744419
10.1145/2821650.2821662
10.1016/j.enbuild.2019.109675
10.1080/08839514.2019.1691839
10.1109/TPWRS.2015.2406311
10.1016/j.ijepes.2019.01.039
10.1088/1757-899X/121/1/012010
10.1109/JIOT.2018.2839058
ContentType Journal Article
Copyright 2021 The Authors
Copyright_xml – notice: 2021 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2021.116601
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2021_116601
S0306261921001409
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c459t-4e18c8a9aa6d3712aa10429c4dad78b83d35cad8ef0626a224aea4c75dfcf5da3
ISICitedReferencesCount 373
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621229600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Sep 28 02:47:41 EDT 2025
Sat Nov 29 07:19:30 EST 2025
Tue Nov 18 22:29:47 EST 2025
Fri Feb 23 02:44:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy saving
Energy consumption in buildings
Anomaly detection
Machine learning
Deep abnormality detection
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-4e18c8a9aa6d3712aa10429c4dad78b83d35cad8ef0626a224aea4c75dfcf5da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8904-5587
OpenAccessLink https://dx.doi.org/10.1016/j.apenergy.2021.116601
PQID 2574345011
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2574345011
crossref_citationtrail_10_1016_j_apenergy_2021_116601
crossref_primary_10_1016_j_apenergy_2021_116601
elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116601
PublicationCentury 2000
PublicationDate 2021-04-01
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fekri, Ghosh, Grolinger (b75) 2020; 13
Hock, Kappes, Ghita (b106) 2020; 21
Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid data. In: Proceedings of the thirtieth international florida artificial intelligence research society conference. 2017, p. 306–11.
Himeur, Alsalemi, Bensaali, Amira (b16) 2020; 267
Ouyang, Sun, Yue (b144) 2017
Zheng, Yang, Niu, Dai, Zhou (b67) 2018; 14
Kim, Lee, Choi, Spurlock, Sim, Todd (b122) 2015
Hou, Xiao (b159) 2017; 5
Liznerski, Ruff, Vandermeulen, Franks, Kloft, Müller (b238) 2020
Qiu, Tu, Zhang (b141) 2018
fei Chen, Zarazua de Rubens, Xu, Li (b12) 2020; 68
Budd, Miller, Manning, Lampos, Zhuang, Edelstein, Rees, Emery, Stevens, Keegan, Short, Pillay, Manley, Cox, Heymann, Johnson, McKendry (b260) 2020; 26
Ariyaluran Habeeb, Nasaruddin, Gani, Amanullah, Abaker Targio Hashem (b25) 2019
Rossi, Chren, Buhnova, Pitner (b32) 2016
Kromanis, Kripakaran (b93) 2013; 27
Vanem, Brandster (b26) 2019
Zyabkina, Domagk, Meyer, Schegner (b145) 2018
Xu, Chen (b81) 2020; 114
Yang, Japkowicz (b180) 2018; 5
Huang, Lei (b74) 2020; 105
Naveen, Ing, Danquah, Sidhu, Abu-Siada (b49) 2016; 121
Ruff, Vandermeulen, Görnitz, Binder, Müller, Müller, Kloft (b166) 2019
Gu, Akoglu, Rinaldo (b131) 2019
Aberkane, Elarbi (b243) 2019
Magazzino, Mele, Schneider (b13) 2020; 279
Lipcak, Macak, Rossi (b147) 2019
Guo, Jin, Chen, Gotz, Zha, Cao (b250) 2019
Liu, Ghosal, Jiang, Sarkar (b178) 2017; 3
Oza, Patel (b42) 2019; 26
Liu, Ting, Zhou (b46) 2012; 6
Farag, Abdelkader, Salem (b165) 2019
Bose, Kar, Roy, Gopalakrishnan, Basu (b91) 2018
Van Efferen, Ali-Eldin (b87) 2017
Himeur, Alsalemi, Al-Kababji, Bensaali, Amira (b10) 2020; 64
Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b130) 2016
(b224) 2020
Al-Kababji, Alsalemi, Himeur, fernandez, Bensaali, Amira, Fetais (b251) 2020
Wang, Ahn (b85) 2020; 259
Touzani, Granderson, Fernandes (b119) 2018; 158
Violatto, Pandharipande, Li, Schenato (b191) 2019; 6
Sardianos, Varlamis, Dimitrakopoulos, Anagnostopoulos, Alsalemi, Bensaali (b3) 2020; 112
Amara korba, El Islem karabadji (b111) 2019
Primartha, Tama (b127) 2017
Batra, Kukunuri, Pandey, Malakar, Kumar, Krystalakos, Zhong, Meira, Parson (b253) 2019
BereziÅski, Jasiul, Szpyrka (b37) 2015; 17
Fenza, Gallo, Loia (b79) 2019; 7
Tang, Chen, Bao, Li (b68) 2019; 26
Saragadam, Wang, Li, Sankaranarayanan (b174) 2017
Akhavan-Hejazi, Mohsenian-Rad (b215) 2018; 4
Capozzoli, Piscitelli, Brandi, Grassi, Chicco (b173) 2018; 157
Hollingsworth, Rouse, Cho, Harris, Sartipi, Sozer (b78) 2018
(b220) 2019
Zhao, Cao, Wen, Song, Lin, Collins (b248) 2014; 20
Gaur, Makonin, Bajić, Majumdar (b22) 2019; 7
Luo, Oyedele, Ajayi, Akinade (b9) 2020; 61
Santolamazza, Cesarotti, Introna (b83) 2018; 51
Xia, Zhao, Zhang (b175) 2011
(b225) 2020
Himeur, Alsalemi, Bensaali, Amira (b209) 2020; 279
Himeur, Alsalemi, Bensaali, Amira (b211) 2020; 227
Ngarambe, Yun, Santamouris (b6) 2020; 211
Zhang, Wu, Lin, Yuan, Song (b43) 2017; 114
Himeur, Elsalemi, Bensaali, Amira (b199) 2021
Nychis, Sekar, Andersen, Kim, Zhang (b36) 2008
Akoglu, Tong, Koutra (b162) 2015; 29
Xu, Liu, Yao (b116) 2019; 2019
Rashid, Singh (b233) 2017
Kumar, Chacko (b24) 2016
Pastore, Zimmerman, Biswas, Bianco (b30) 2020; 10
Ghori, Imran, Nawaz, Abbasi, Ullah, Szathmary (b45) 2020
Elsalemi, Himeur, Bensaali, Amira (b17) 2020
Yeckle, Tang (b35) 2018
Akouemo, Povinelli (b101) 2016; 32
Himeur Y, Elsalemi A, Bensaali F, Amira A. Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications. In: Proc. 25th International Conference on Pattern Recognition (ICPR), 2020. p. 1–8.
Alsalemi, Sardianos, Bensaali, Varlamis, Amira, Dimitrakopoulos (b11) 2019; 13
Gregurić, Vujić, Alexopoulos, Miletić (b245) 2020; 10
Nagi, Yap, Tiong, Ahmed, Mohammad (b112) 2008
Wang, Yang, Ahn (b168) 2019; 7
Roberts, Bassett, Lochner (b100) 2021
Nabil, Ismail, Mahmoud, Alasmary, Serpedin (b197) 2019; 7
Tian, Khoa, Anaissi, Wang, Chen (b213) 2019
Kudo, Morita, Matsuda, Takine (b52) 2013
He, Xu, Deng (b155) 2003; 24
Sun, Yu, Chen, Kadam (b72) 2019
Jakkula, Cook (b104) 2010
Patrono, Primiceri, Rametta, Sergi, Visconti (b195) 2017
Al-Kababji, Alsalemi, Himeur, Bensaali, Amira, Fernandez, Fetais (b252) 2020
(b219) 2020
Scarpiniti, Baccarelli, Momenzadeh, Uncini (b202) 2019; 9
Anjomshoaa, Duarte, Rennings, Matarazzo, deSouza, Ratti (b205) 2018; 5
Depuru, Wang, Devabhaktuni (b110) 2011
Lazarevic, Kumar (b129) 2005
Choi, Lim, Choi, Kim (b71) 2020
Chen, Sinn, Ploennigs, Schumann (b109) 2014
Kamaraj, Dezfouli, Liu (b55) 2019
Brlisauer, Goette, Jiang, Schmitz, Schubert (b14) 2020; 145
(b223) 2020
daSilva, Guarany, Arruda, Gurjão, Freire (b77) 2019
Nguyen, Ang, Gopalkrishnan (b124) 2010
Izakian, Pedrycz (b34) 2013
Liu, Pang, Karlsson, Gong (b203) 2020; 183
Munir, Siddiqui, Chattha, Dengel, Ahmed (b65) 2019; 19
Himeur, Alsalemi, Bensaali, Amira (b19) 2020; 12
Kleiminger, Beckel, Staake, Santini (b188) 2013
Cody, Ford, Siraj (b114) 2015
Alsalemi, Himeur, Bensaali, Amira, Sardianos, Varlamis, Dimitrakopoulos (b242) 2020; 8
Kaissis, Makowski, Rückert, Braren (b255) 2020; 2
Hao, Li, Xu, Liu, Yang (b256) 2019
Fahim, Sillitti (b95) 2018
Chahla C, Snoussi H, Merghem-Boulahia L, Esseghir M. A novel approach for anomaly detection in power consumption data. In: 8th international conference on pattern recognition applications and methods, Prague, Czech Republic; 2019.
Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b125) 2017; 144
Yijia, Hang (b133) 2016
Ouyang, Sun, Chen, Yue, Zhang (b128) 2018; 6
Salinas, Li (b210) 2016; 31
Rahmani, Afra, Zarour, Addam, Koochakzadeh, Kianmehr (b164) 2014; 61
Himeur, Alsalemi, Bensaali, Amira, Varlamis, Bravos, Sardianos, Dimitrakopoulos (b216) 2020
(b218) 2020
Shi, Li, Sun (b38) 2016
Wun, Shi, Luo, Luo (b126) 2019
Liu, Ting, Zhou (b138) 2008
Janetzko, Stoffel, Mittelstädt, Keim (b170) 2014; 38
Yen, Morris, Ezra, Huat (b148) 2019; 109
Pereira, Silveira (b62) 2018
Ahmed, Mahmood, Islam (b28) 2016; 55
Laaroussi, Bahrar, Mankibi, Draoui, Si-Larbi (b187) 2020; 63
Zeng, Zhuang (b89) 2010
Gao, Song, Wen, Wang, Sun, Xu (b140) 2020
(b221) 2020
Huang, Sethu, Kandasamy (b47) 2016; 13
Zhang, Ji (b200) 2020
Chou, Telaga (b98) 2014; 33
Giannoni, Mancini, Marinelli (b156) 2018
Gao, Schay, Hou (b190) 2018
Bontemps, Cao, McDermott, Le-Khac (b76) 2016
Janakiram, Kumar, Reddy V. (b108) 2006
(b217) 2020
Janakiraman, Nielsen (b90) 2016
Visconti, Costantini, de Fazio, Lay-Ekuakille, Patrono (b194) 2019
Tran, Fan, Shahabi (b134) 2016; 9
(b222) 2020
Ghanbari, Kinsner, Ferens (b84) 2016
Sardianos, Varlamis, Chronis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b264) 2020
Weng, Zhang, Xia (b60) 2019; 7
Sayed, Elsalemi, Himeur, Bensaali, Amira (b241) 2021
Himeur, Elsalemi, Bensaali, Amira (b54) 2020
Bacciu, Lisboa, Sperduti, Villmann (b99) 2015
Valko, Kveton, Valizadegan, Cooper, Hauskrecht (b48) 2011
Pham, Ngo, Ha Truong, Huynh, Truong (b8) 2020; 260
Rashid, Stankovic, Stankovic, Singh (b23) 2019
Kammerer, Hoppenstedt, Pryss, Stökler, Allgaier, Reichert (b88) 2019; 19
Liu, Zhang, Lu (b212) 2014
Dilraj, Nimmy, Sankaran (b183) 2019
Shi, Liu, Tong, He, Yan, Cao (b249) 2019
Chen, Cook (b153) 2011; WS-11-07
Krishna, Lee, Weaver, Iyer, Sanders (b193) 2016
Yuan, Jia (b63) 2015
Li, Chen, Jin, Shi, Goh, Ng (b73) 2019
Luo, Li, Qiu (b201) 2020; 20
Huo, Wang, Li (b135) 2019
Zhang, Chen, Black (b94) 2011
Coma-Puig, Carmona, Gavaldà, Alcoverro, Martin (b107) 2016
Izumi, Azuma (b206) 2018; 14
Arjunan, Khadilkar, Ganu, Charbiwala, Singh, Singh (b31) 2015
Mulongo, Atemkeng, Ansah-Narh, Rockefeller, Nguegnang, Garuti (b86) 2020; 34
(b207) 2020
Chen, Fei, Wang, Lu, Jin, Li, Wu (b82) 2014
Gaikwad, Thool (b123) 2015
Lee, Kim (b139) 2019
Sardianos, Varlamis, Dimitrakopoulos, Anagnostopoulo, Alsalemi, Himeur (b4) 2020
Brown (b50) 1998
(b227) 2020
Fan, Zaïane, Foss, Wu (b136) 2009; 19
Kauffmann, Ruff, Montavon, Müller (b236) 2020
Zhang, Wang (b132) 2018
Antwarg, Miller, Shapira, Rokach (b237) 2019
Jakkula, Cook (b40) 2011; WS-11-07
Sial, Singh, Mahanti (b53) 2019
Albiero, Santos, Uyrá, Vilarino, Silva, Souza (b121) 2019
Himeur, Alsalemi, Bensaali, Amira, Sardianos, Varlamis (b1) 2021
Feng, Li, Pan, Zhang, Guo (b29) 2017; 13
Himeur, Elsalemi, Bensaali, Amira (b64) 2021
Varlamis, Sardianos, Dimitrakopoulos, Alsalemi, Himeur, Bensaali (b2) 2020
Wang, Wang, Jiang, Qin, Xue (b176) 2016
Rau, Moran, Manton, Goggins (b5) 2020; 54
Sardianos, Varlamis, Chronis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b186) 2020
Yao, Wen, Liang, Fu, Zhang, Yang (b198) 2019; 6
Patrono, Rametta, Meis (b196) 2018
Mookiah, Dean, Eberle (b146) 2017
Sardianos, Chronis, Varlamis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b258) 2021
Reif, Goldstein, Stahl, Breuel (b115) 2008
Petladwala, Ishii, Sendoda, Kondo (b142) 2019
Luong, Hoang, Gong, Niyato, Wang, Liang, Kim (b246) 2019; 21
Ahmed, Mahmood, Islam (b160) 2016; 55
Kim, Cho, Lee, Kang, Kim, Hwang (b158) 2013; 15
Rashid, Singh, Stankovic, Stankovic (b20) 2019; 238
Nilashi, Asadi, Abumalloh, Samad, Ibrahim (b259) 2020; 7
Chijoriga (b57) 2011; 6
Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder (b39) 2018; vol. 80
Himeur, Alsalemi, Bensaali, Amira (b232) 2020
Batra, Kelly, Parson, Dutta, Knottenbelt, Rogers, Singh, Srivastava (b254) 2014
Chou, Telaga, Chong, Gibson (b172) 2017; 149
Dsir, Bernard, Petitjean, Heutte (b44) 2013; 46
Wang, Lam, Song, Li, Guo (b21) 2020; 112
Liu, Tan, Xu, Chen, Li (b247) 2020; 208
Linda, Wijayasekara, Manic, Rieger (b152) 2012
Kabler, Lutes, Briançon, Crawford, Giacoponello, Johnson, Jara-Olivares, Epard, Goldberg, Lancaster (b185) 2014
Alsalemi, Himeur, Bensaali, Amira, Sardianos, Chronis, Varlamis, Dimitrakopoulos (b261) 2020
Liu, Iftikhar, Nielsen, Heller (b105) 2016
Rashidi, Hashemi, Hamzeh (b102) 2011
Zhang, Chen (b263) 2020; 14
Alrawashdeh, Purdy (b70) 2016
Xie, Jin, Wang, Yang, Lu, Li (b214) 2020; 162
Amarasinghe, Kenney, Manic (b235) 2018
Wang, Nie, Wang, Yang, Long (b59) 2020
Jain, Choksi, Pindoriya (b151) 2019; 2
Fan, Xiao, Zhao, Wang (b167) 2018; 211
Mao, Cao, zhou, Yan, Zhang (b137) 2018
Andrysiak, Saganowski, Kiedrowski (b143) 2017; 2017
Breunig, Kriegel, Ng, Sander (b154) 2000; 29
Liu, Nielsen (b96) 2018; 77
(b229) 2020
Verma, S
Xie (10.1016/j.apenergy.2021.116601_b214) 2020; 162
Verma (10.1016/j.apenergy.2021.116601_b27) 2019
Capozzoli (10.1016/j.apenergy.2021.116601_b173) 2018; 157
Linda (10.1016/j.apenergy.2021.116601_b152) 2012
Zhang (10.1016/j.apenergy.2021.116601_b43) 2017; 114
Rashid (10.1016/j.apenergy.2021.116601_b20) 2019; 238
Ahmed (10.1016/j.apenergy.2021.116601_b28) 2016; 55
Fan (10.1016/j.apenergy.2021.116601_b136) 2009; 19
Himeur (10.1016/j.apenergy.2021.116601_b16) 2020; 267
Ruff (10.1016/j.apenergy.2021.116601_b39) 2018; vol. 80
Yang (10.1016/j.apenergy.2021.116601_b180) 2018; 5
Himeur (10.1016/j.apenergy.2021.116601_b1) 2021
Fan (10.1016/j.apenergy.2021.116601_b167) 2018; 211
Himeur (10.1016/j.apenergy.2021.116601_b232) 2020
Gaikwad (10.1016/j.apenergy.2021.116601_b123) 2015
(10.1016/j.apenergy.2021.116601_b207) 2020
(10.1016/j.apenergy.2021.116601_b227) 2020
Kiran (10.1016/j.apenergy.2021.116601_b58) 2018; 4
Hou (10.1016/j.apenergy.2021.116601_b159) 2017; 5
Zhang (10.1016/j.apenergy.2021.116601_b113) 2019
Akouemo (10.1016/j.apenergy.2021.116601_b101) 2016; 32
Himeur (10.1016/j.apenergy.2021.116601_b7) 2020
(10.1016/j.apenergy.2021.116601_b219) 2020
Jain (10.1016/j.apenergy.2021.116601_b151) 2019; 2
Yijia (10.1016/j.apenergy.2021.116601_b133) 2016
Rashid (10.1016/j.apenergy.2021.116601_b23) 2019
(10.1016/j.apenergy.2021.116601_b221) 2020
Gaur (10.1016/j.apenergy.2021.116601_b22) 2019; 7
fei Chen (10.1016/j.apenergy.2021.116601_b12) 2020; 68
Sun (10.1016/j.apenergy.2021.116601_b72) 2019
Sial (10.1016/j.apenergy.2021.116601_b53) 2019
Lazarevic (10.1016/j.apenergy.2021.116601_b129) 2005
Hollingsworth (10.1016/j.apenergy.2021.116601_b78) 2018
Cui (10.1016/j.apenergy.2021.116601_b97) 2017; 8
Ahmed (10.1016/j.apenergy.2021.116601_b160) 2016; 55
Fenza (10.1016/j.apenergy.2021.116601_b79) 2019; 7
Kromanis (10.1016/j.apenergy.2021.116601_b93) 2013; 27
Zheng (10.1016/j.apenergy.2021.116601_b67) 2018; 14
Zhang (10.1016/j.apenergy.2021.116601_b69) 2018
Ghanbari (10.1016/j.apenergy.2021.116601_b84) 2016
Yip (10.1016/j.apenergy.2021.116601_b149) 2018; 101
Fekri (10.1016/j.apenergy.2021.116601_b75) 2020; 13
(10.1016/j.apenergy.2021.116601_b222) 2020
Sardianos (10.1016/j.apenergy.2021.116601_b186) 2020
Elavarasan (10.1016/j.apenergy.2021.116601_b257) 2020
Rossi (10.1016/j.apenergy.2021.116601_b32) 2016
Oza (10.1016/j.apenergy.2021.116601_b42) 2019; 26
Liu (10.1016/j.apenergy.2021.116601_b178) 2017; 3
Wang (10.1016/j.apenergy.2021.116601_b59) 2020
Nabil (10.1016/j.apenergy.2021.116601_b192) 2018
Song (10.1016/j.apenergy.2021.116601_b169) 2017; 2017
Kamaraj (10.1016/j.apenergy.2021.116601_b55) 2019
Nabil (10.1016/j.apenergy.2021.116601_b197) 2019; 7
Alsalemi (10.1016/j.apenergy.2021.116601_b11) 2019; 13
Himeur (10.1016/j.apenergy.2021.116601_b231) 2020
Nagi (10.1016/j.apenergy.2021.116601_b112) 2008
Ngarambe (10.1016/j.apenergy.2021.116601_b6) 2020; 211
Alsalemi (10.1016/j.apenergy.2021.116601_b242) 2020; 8
Vanem (10.1016/j.apenergy.2021.116601_b26) 2019
Xu (10.1016/j.apenergy.2021.116601_b81) 2020; 114
Munawar (10.1016/j.apenergy.2021.116601_b179) 2017
Brown (10.1016/j.apenergy.2021.116601_b50) 1998
Bose (10.1016/j.apenergy.2021.116601_b91) 2018
Cody (10.1016/j.apenergy.2021.116601_b114) 2015
Patrono (10.1016/j.apenergy.2021.116601_b195) 2017
Jakkula (10.1016/j.apenergy.2021.116601_b40) 2011; WS-11-07
Alrawashdeh (10.1016/j.apenergy.2021.116601_b70) 2016
Elsalemi (10.1016/j.apenergy.2021.116601_b17) 2020
Andoni (10.1016/j.apenergy.2021.116601_b230) 2019; 100
Mookiah (10.1016/j.apenergy.2021.116601_b146) 2017
(10.1016/j.apenergy.2021.116601_b182) 2020
Shi (10.1016/j.apenergy.2021.116601_b249) 2019
Luo (10.1016/j.apenergy.2021.116601_b9) 2020; 61
Scarpiniti (10.1016/j.apenergy.2021.116601_b202) 2019; 9
Gao (10.1016/j.apenergy.2021.116601_b140) 2020
Fahim (10.1016/j.apenergy.2021.116601_b95) 2018
Yuan (10.1016/j.apenergy.2021.116601_b63) 2015
Alsalemi (10.1016/j.apenergy.2021.116601_b261) 2020
Bontemps (10.1016/j.apenergy.2021.116601_b76) 2016
Visconti (10.1016/j.apenergy.2021.116601_b194) 2019
Liu (10.1016/j.apenergy.2021.116601_b105) 2016
Hao (10.1016/j.apenergy.2021.116601_b256) 2019
Hock (10.1016/j.apenergy.2021.116601_b106) 2020; 21
Ruff (10.1016/j.apenergy.2021.116601_b166) 2019
Valko (10.1016/j.apenergy.2021.116601_b48) 2011
Rashid (10.1016/j.apenergy.2021.116601_b233) 2017
Chalapathy (10.1016/j.apenergy.2021.116601_b41) 2018
Kabler (10.1016/j.apenergy.2021.116601_b185) 2014
Ouyang (10.1016/j.apenergy.2021.116601_b128) 2018; 6
Bosman (10.1016/j.apenergy.2021.116601_b181) 2017; 33
Liu (10.1016/j.apenergy.2021.116601_b212) 2014
Chen (10.1016/j.apenergy.2021.116601_b82) 2014
BereziÅski (10.1016/j.apenergy.2021.116601_b37) 2015; 17
Kim (10.1016/j.apenergy.2021.116601_b122) 2015
Akbar (10.1016/j.apenergy.2021.116601_b189) 2015
Ariyaluran Habeeb (10.1016/j.apenergy.2021.116601_b25) 2019
Imamverdiyev (10.1016/j.apenergy.2021.116601_b92) 2016
Gao (10.1016/j.apenergy.2021.116601_b190) 2018
10.1016/j.apenergy.2021.116601_b234
Albiero (10.1016/j.apenergy.2021.116601_b121) 2019
Janakiram (10.1016/j.apenergy.2021.116601_b108) 2006
Bahri (10.1016/j.apenergy.2021.116601_b117) 2011
Bacciu (10.1016/j.apenergy.2021.116601_b99) 2015
Zhang (10.1016/j.apenergy.2021.116601_b132) 2018
Himeur (10.1016/j.apenergy.2021.116601_b15) 2020
Rahmani (10.1016/j.apenergy.2021.116601_b164) 2014; 61
Krishna (10.1016/j.apenergy.2021.116601_b193) 2016
Tian (10.1016/j.apenergy.2021.116601_b213) 2019
Roberts (10.1016/j.apenergy.2021.116601_b100) 2021
Pastore (10.1016/j.apenergy.2021.116601_b30) 2020; 10
daSilva (10.1016/j.apenergy.2021.116601_b77) 2019
Levorato (10.1016/j.apenergy.2021.116601_b177) 2012
Himeur (10.1016/j.apenergy.2021.116601_b199) 2021
Liu (10.1016/j.apenergy.2021.116601_b96) 2018; 77
Kim (10.1016/j.apenergy.2021.116601_b158) 2013; 15
Lee (10.1016/j.apenergy.2021.116601_b139) 2019
Saragadam (10.1016/j.apenergy.2021.116601_b174) 2017
Henriques (10.1016/j.apenergy.2021.116601_b33) 2020; 9
Nguyen (10.1016/j.apenergy.2021.116601_b124) 2010
Huo (10.1016/j.apenergy.2021.116601_b135) 2019
Nychis (10.1016/j.apenergy.2021.116601_b36) 2008
(10.1016/j.apenergy.2021.116601_b220) 2019
Al-Kababji (10.1016/j.apenergy.2021.116601_b251) 2020
Janetzko (10.1016/j.apenergy.2021.116601_b170) 2014; 38
Salinas (10.1016/j.apenergy.2021.116601_b210) 2016; 31
Al-Kababji (10.1016/j.apenergy.2021.116601_b252) 2020
Jakkula (10.1016/j.apenergy.2021.116601_b104) 2010
Sardianos (10.1016/j.apenergy.2021.116601_b239) 2020
Rashidi (10.1016/j.apenergy.2021.116601_b102) 2011
Kauffmann (10.1016/j.apenergy.2021.116601_b236) 2020
Wun (10.1016/j.apenergy.2021.116601_b126) 2019
Zyabkina (10.1016/j.apenergy.2021.116601_b145) 2018
Breunig (10.1016/j.apenergy.2021.116601_b154) 2000; 29
Liu (10.1016/j.apenergy.2021.116601_b247) 2020; 208
Akoglu (10.1016/j.apenergy.2021.116601_b162) 2015; 29
Laaroussi (10.1016/j.apenergy.2021.116601_b187) 2020; 63
Zhang (10.1016/j.apenergy.2021.116601_b94) 2011
Shabestary (10.1016/j.apenergy.2021.116601_b244) 2018
Himeur (10.1016/j.apenergy.2021.116601_b262) 2020
Liu (10.1016/j.apenergy.2021.116601_b46) 2012; 6
Kudo (10.1016/j.apenergy.2021.116601_b52) 2013
Aberkane (10.1016/j.apenergy.2021.116601_b243) 2019
Xu (10.1016/j.apenergy.2021.116601_b116) 2019; 2019
Qiu (10.1016/j.apenergy.2021.116601_b141) 2018
Munir (10.1016/j.apenergy.2021.116601_b65) 2019; 19
Choi (10.1016/j.apenergy.2021.116601_b71) 2020
Yeckle (10.1016/j.apenergy.2021.116601_b35) 2018
Izumi (10.1016/j.apenergy.2021.116601_b206) 2018; 14
Primartha (10.1016/j.apenergy.2021.116601_b127) 2017
Araya (10.1016/j.apenergy.2021.116601_b130) 2016
Wang (10.1016/j.apenergy.2021.116601_b176) 2016
Zeng (10.1016/j.apenergy.2021.116601_b89) 2010
(10.1016/j.apenergy.2021.116601_b224) 2020
Feng (10.1016/j.apenergy.2021.116601_b29) 2017; 13
Farag (10.1016/j.apenergy.2021.116601_b165) 2019
Petladwala (10.1016/j.apenergy.2021.116601_b142) 2019
Bose (10.1016/j.apenergy.2021.116601_b240) 2019
Lipcak (10.1016/j.apenergy.2021.116601_b147) 2019
Zhou (10.1016/j.apenergy.2021.116601_b157) 2017
Tang (10.1016/j.apenergy.2021.116601_b68) 2019; 26
Huang (10.1016/j.apenergy.2021.116601_b74) 2020; 105
Sayed (10.1016/j.apenergy.2021.116601_b241) 2021
Ghori (10.1016/j.apenergy.2021.116601_b45) 2020
Araya (10.1016/j.apenergy.2021.116601_b125) 2017; 144
(10.1016/j.apenergy.2021.116601_b223) 2020
Depuru (10.1016/j.apenergy.2021.116601_b110) 2011
Amara korba (10.1016/j.apenergy.2021.116601_b111) 2019
Reif (10.1016/j.apenergy.2021.116601_b115) 2008
Dilraj (10.1016/j.apenergy.2021.116601_b183) 2019
Yen (10.1016/j.apenergy.2021.116601_b148) 2019; 109
Giannoni (10.1016/j.apenergy.2021.116601_b156) 2018
Patrono (10.1016/j.apenergy.2021.116601_b196) 2018
Rashid (10.1016/j.apenergy.2021.116601_b184) 2018
Chen (10.1016/j.apenergy.2021.116601_b153) 2011; WS-11-07
Budd (10.1016/j.apenergy.2021.116601_b260) 2020; 26
Arjunan (10.1016/j.apenergy.2021.116601_b31) 2015
(10.1016/j.apenergy.2021.116601_b217) 2020
Luo (10.1016/j.apenergy.2021.116601_b201) 2020; 20
Sardianos (10.1016/j.apenergy.2021.116601_b4) 2020
Himeur (10.1016/j.apenergy.2021.116601_b64) 2021
Antwarg (10.1016/j.apenergy.2021.116601_b237) 2019
Alheeti (10.1016/j.apenergy.2021.116601_b56) 2011; 6
Davis (10.1016/j.apenergy.2021.116601_b163) 2011
Luong (10.1016/j.apenergy.2021.116601_b246) 2019; 21
Janakiraman (10.1016/j.apenergy.2021.116601_b90) 2016
Saqaeeyan (10.1016/j.apenergy.2021.116601_b103) 2020; 14
Van Efferen (10.1016/j.apenergy.2021.116601_b87) 2017
(10.1016/j.apenergy.2021.116601_b229) 2020
Dsir (10.1016/j.apenergy.2021.116601_b44) 2013; 46
10.1016/j.apenergy.2021.116601_b161
Wang (10.1016/j.apenergy.2021.116601_b85) 2020; 259
Kleiminger (10.1016/j.apenergy.2021.116601_b188) 2013
Batra (10.1016/j.apenergy.2021.116601_b253) 2019
Liu (10.1016/j.apenergy.2021.116601_b138) 2008
Naveen (10.1016/j.apenergy.2021.116601_b49) 2016; 121
Liu (10.1016/j.apenergy.2021.116601_b203) 2020; 183
Uttama Nambi (10.1016/j.apenergy.2021.116601_b208) 2015
(10.1016/j.apenergy.2021.116601_b228) 2020
Chijoriga (10.1016/j.apenergy.2021.116601_b57) 2011; 6
Li (10.1016/j.apenergy.2021.116601_b73) 2019
(10.1016/j.apenergy.2021.116601_b218) 2020
Wang (10.1016/j.apenergy.2021.116601_b61) 2019
Nilashi (10.10
References_xml – start-page: 193
  year: 2016
  end-page: 209
  ident: b105
  article-title: Online anomaly energy consumption detection using lambda architecture
  publication-title: Big data analytics and knowledge discovery
– start-page: 291
  year: 2015
  end-page: 295
  ident: b123
  article-title: Intrusion detection system using bagging ensemble method of machine learning
  publication-title: 2015 international conference on computing communication control and automation
– start-page: 589
  year: 2016
  end-page: 594
  ident: b176
  article-title: Anomaly detection in big data with separable compressive sensing
  publication-title: Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems
– volume: 8
  year: 2017
  ident: b97
  article-title: A new anomaly detection system for school electricity consumption data
  publication-title: Information
– start-page: 1
  year: 2011
  end-page: 8
  ident: b110
  article-title: Support vector machine based data classification for detection of electricity theft
  publication-title: 2011 IEEE/PES power systems conference and exposition
– start-page: 310
  year: 2015
  end-page: 313
  ident: b63
  article-title: A distributed anomaly detection method of operation energy consumption using smart meter data
  publication-title: 2015 international conference on intelligent information hiding and multimedia signal processing (IIH-MSP)
– start-page: 916
  year: 2019
  end-page: 925
  ident: b121
  article-title: Employing gradient boosting and anomaly detection for prediction of frauds in energy consumption
  publication-title: Anais do XVI encontro nacional de inteligência artificial e computacional
– volume: 7
  start-page: 2169
  year: 2019
  end-page: 2178
  ident: b60
  article-title: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus
  publication-title: IEEE Access
– start-page: 35
  year: 2015
  end-page: 44
  ident: b31
  article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information
  publication-title: Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments
– start-page: 1
  year: 2019
  end-page: 23
  ident: b166
  article-title: Deep semi-supervised anomaly detection
– start-page: 1
  year: 2021
  end-page: 20
  ident: b258
  article-title: Smart fusion of sensor data and human feedback for personalised energy-saving recommendations
  publication-title: Int J Intell Syst
– start-page: 195
  year: 2016
  end-page: 200
  ident: b70
  article-title: Toward an online anomaly intrusion detection system based on deep learning
  publication-title: 2016 15th IEEE international conference on machine learning and applications (ICMLA)
– volume: 31
  start-page: 955
  year: 2019
  end-page: 965
  ident: b120
  article-title: An in-depth experimental study of anomaly detection using gradient boosted machine
  publication-title: Neural Comput Appl
– reference: Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid data. In: Proceedings of the thirtieth international florida artificial intelligence research society conference. 2017, p. 306–11.
– start-page: 1993
  year: 2016
  end-page: 2000
  ident: b90
  article-title: Anomaly detection in aviation data using extreme learning machines
  publication-title: 2016 international joint conference on neural networks (IJCNN)
– volume: 14
  start-page: 1175
  year: 2018
  end-page: 1185
  ident: b206
  article-title: Real-time pricing by data fusion on networks
  publication-title: IEEE Trans Ind Inf
– volume: 29
  start-page: 626
  year: 2015
  end-page: 688
  ident: b162
  article-title: Graph based anomaly detection and description: A survey
  publication-title: Data Min Knowl Discov
– start-page: 1
  year: 2020
  end-page: 6
  ident: b239
  article-title: Real-time personalised energy saving recommendations
  publication-title: The 16th IEEE International Conference on Green Computing and Communications (GreenCom)
– volume: 9
  start-page: 1
  year: 2019
  end-page: 14
  ident: b202
  article-title: Smartfog: Training the fog for the energy-saving analytics of smart-meter data
  publication-title: Appl Sci
– volume: 5
  start-page: 1
  year: 2018
  end-page: 28
  ident: b180
  article-title: Anomaly behaviour detection based on meta-morisita index for large scale spatio-temporal data set
  publication-title: J Big Data
– volume: 279
  year: 2020
  ident: b13
  article-title: The relationship between air pollution and covid-19-related deaths: an application to three french cities
  publication-title: Appl Energy
– volume: 24
  start-page: 1641
  year: 2003
  end-page: 1650
  ident: b155
  article-title: Discovering cluster-based local outliers
  publication-title: Pattern Recognit Lett
– volume: 227
  start-page: 110404
  year: 2020
  ident: b211
  article-title: Building power consumption datasets: survey, taxonomy and future directions
  publication-title: Energy Buil
– volume: 238
  start-page: 796
  year: 2019
  end-page: 805
  ident: b20
  article-title: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?
  publication-title: Appl Energy
– volume: 208
  start-page: 109675
  year: 2020
  ident: b247
  article-title: Study on deep reinforcement learning techniques for building energy consumption forecasting
  publication-title: Energy Buil
– start-page: 894
  year: 2020
  end-page: 896
  ident: b59
  publication-title: Deep learning for anomaly detection
– year: 2020
  ident: b226
  article-title: Hive starter pack
– start-page: 141
  year: 2016
  end-page: 152
  ident: b76
  article-title: Collective anomaly detection based on long short-term memory recurrent neural networks
  publication-title: Future data and security engineering
– volume: 2
  start-page: 305
  year: 2020
  end-page: 311
  ident: b255
  article-title: Secure, privacy-preserving and federated machine learning in medical imaging
  publication-title: Nature Mach Intell
– volume: 22
  start-page: 121
  year: 2017
  end-page: 134
  ident: b204
  article-title: Hybrid computation offloading for smart home automation in mobile cloud computing
  publication-title: Pers Ubiquitous Comput
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: b30
  article-title: Annotation-free learning of plankton for classification and anomaly detection
  publication-title: Sci Rep
– volume: 12
  start-page: 1381
  year: 2020
  end-page: 1401
  ident: b19
  article-title: A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks
  publication-title: Cogn Comput
– year: 2018
  ident: b91
  article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing
– start-page: 77
  year: 2012
  end-page: 82
  ident: b152
  article-title: Computational intelligence based anomaly detection for building energy management systems
  publication-title: 2012 5th international symposium on resilient control systems
– start-page: 597
  year: 2019
  end-page: 602
  ident: b240
  article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing
  publication-title: ASPDAC ’19
– volume: 101
  start-page: 189
  year: 2018
  end-page: 203
  ident: b149
  article-title: An anomaly detection framework for identifying energy theft and defective meters in smart grids
  publication-title: Int J Electr Power Energy Syst
– start-page: 2407
  year: 2019
  end-page: 2412
  ident: b113
  article-title: Anomaly detection method of smart meters data based on GMM-lda clustering feature learning and PSO support vector machine
  publication-title: 2019 IEEE sustainable power and energy conference (ISPEC)
– volume: 7
  start-page: 8
  year: 2020
  end-page: 12
  ident: b259
  article-title: Intelligent recommender systems in the COVID-19 outbreak: The case of wearable healthcare devices
  publication-title: J Soft Comput Decis Support Syst
– volume: 2
  start-page: 612
  year: 2019
  end-page: 624
  ident: b151
  article-title: Rule-based classification of energy theft and anomalies in consumers load demand profile
  publication-title: IET Smart Grid
– start-page: 394
  year: 2020
  end-page: 399
  ident: b186
  article-title: A model for predicting room occupancy based on motion sensor data
  publication-title: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT)
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: b169
  article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data
  publication-title: Comput Intell Neurosci
– volume: 51
  start-page: 1131
  year: 2018
  end-page: 1136
  ident: b83
  article-title: Anomaly detection in energy consumption for condition-based maintenance of compressed air generation systems: an approach based on artificial neural networks
  publication-title: IFAC-PapersOnLine
– start-page: 703
  year: 2019
  end-page: 716
  ident: b73
  article-title: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: Artificial neural networks and machine learning – ICANN 2019: Text and time series
– year: 2020
  ident: b217
  article-title: Ecoisme
– start-page: 286
  year: 2018
  end-page: 293
  ident: b244
  article-title: Deep learning vs. Discrete reinforcement learning for adaptive traffic signal control
  publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC)
– start-page: 477
  year: 2019
  end-page: 481
  ident: b126
  article-title: Research on anomaly detection method for electro-data
  publication-title: 2019 IEEE sustainable power and energy conference (ISPEC)
– volume: 19
  start-page: 1
  year: 2019
  end-page: 18
  ident: b88
  article-title: Anomaly detections for manufacturing systems based on sensor data—Insights into two challenging real-world production settings
  publication-title: Sensors
– start-page: 1
  year: 2019
  end-page: 5
  ident: b243
  article-title: Deep reinforcement learning for real-world anomaly detection in surveillance videos
  publication-title: 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA)
– year: 2020
  ident: b219
  article-title: Verv energy
– volume: 7
  start-page: 9645
  year: 2019
  end-page: 9657
  ident: b79
  article-title: Drift-aware methodology for anomaly detection in smart grid
  publication-title: IEEE Access
– year: 2020
  ident: b229
  article-title: Enertalk: Energy monitoring with big data analysis
– year: 2016
  ident: b24
  publication-title: Clustering algorithms for intrusion detection: A broad visualization
– start-page: 4921
  year: 2018
  end-page: 4925
  ident: b78
  article-title: Energy anomaly detection with forecasting and deep learning
  publication-title: 2018 IEEE international conference on big data (Big Data)
– start-page: 1
  year: 2008
  end-page: 6
  ident: b112
  article-title: Detection of abnormalities and electricity theft using genetic support vector machines
  publication-title: TENCON 2008 - 2008 IEEE region 10 conference
– start-page: 368
  year: 2010
  end-page: 383
  ident: b124
  article-title: Mining outliers with ensemble of heterogeneous detectors on random subspaces
  publication-title: Database systems for advanced applications
– volume: 24
  start-page: 23
  year: 2018
  end-page: 33
  ident: b171
  article-title: Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data
  publication-title: IEEE Trans Vis Comput Graphics
– start-page: 1
  year: 2018
  end-page: 6
  ident: b95
  article-title: An anomaly detection model for enhancing energy management in smart buildings
  publication-title: 2018 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm)
– volume: 112
  start-page: 381
  year: 2020
  end-page: 393
  ident: b21
  article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach
  publication-title: Environ Sci Policy
– start-page: 375
  year: 2019
  end-page: 382
  ident: b72
  article-title: Time series anomaly detection based on GAN
  publication-title: 2019 sixth international conference on social networks analysis, management and security (SNAMS)
– year: 2020
  ident: b223
  article-title: Verdigris
– start-page: 1
  year: 2020
  end-page: 22
  ident: b231
  article-title: An intelligent non-intrusive load monitoring scheme based on 2D phase encoding of power signals
  publication-title: Int J Intell Syst
– start-page: 487
  year: 2019
  end-page: 491
  ident: b61
  article-title: Power consumption predicting and anomaly detection based on long short-term memory neural network
  publication-title: 2019 IEEE 4th international conference on cloud computing and big data analysis (ICCCBDA)
– volume: 19
  start-page: 31
  year: 2009
  end-page: 51
  ident: b136
  article-title: Resolution-based outlier factor: Detecting the top-n most outlying data points in engineering data
  publication-title: Knowl Inf Syst
– year: 2011
  ident: b163
  article-title: Detecting anomalies in graphs with numeric labels
– start-page: 1
  year: 2016
  end-page: 6
  ident: b84
  article-title: Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network
  publication-title: 2016 IEEE electrical power and energy conference (EPEC)
– start-page: 1
  year: 2020
  end-page: 8
  ident: b15
  article-title: Improving in-home appliance identification using fuzzy-neighbors-preserving analysis based QR-decomposition
  publication-title: International congress on information and communication technology (ICICT)
– start-page: 45
  year: 2015
  end-page: 54
  ident: b208
  article-title: Loced: Location-aware energy disaggregation framework
  publication-title: Proceedings of the 2Nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments
– start-page: 561
  year: 2015
  end-page: 566
  ident: b189
  article-title: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data
  publication-title: 2015 IEEE International Conference on Communications (ICC)
– volume: 21
  start-page: 3133
  year: 2019
  end-page: 3174
  ident: b246
  article-title: Applications of deep reinforcement learning in communications and networking: A survey
  publication-title: IEEE Commun Surv Tutor
– start-page: 136
  year: 2014
  end-page: 142
  ident: b82
  article-title: Energy consumption data based machine anomaly detection
  publication-title: 2014 second international conference on advanced cloud and big data
– start-page: 1
  year: 2019
  end-page: 37
  ident: b237
  article-title: Explaining anomalies detected by autoencoders using SHAP
– start-page: 1
  year: 2019
  end-page: 5
  ident: b77
  article-title: A method for anomaly prediction in power consumption using long short-term memory and negative selection
  publication-title: 2019 IEEE international symposium on circuits and systems (ISCAS)
– start-page: 1
  year: 2013
  end-page: 8
  ident: b188
  article-title: Occupancy detection from electricity consumption data
  publication-title: BuildSys’13
– start-page: 157
  year: 2005
  end-page: 166
  ident: b129
  article-title: Feature bagging for outlier detection
  publication-title: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining
– start-page: 1330
  year: 2013
  end-page: 1334
  ident: b52
  article-title: Pca-based robust anomaly detection using periodic traffic behavior
  publication-title: 2013 IEEE international conference on communications workshops (ICC)
– start-page: 311
  year: 2018
  end-page: 317
  ident: b235
  article-title: Toward explainable deep neural network based anomaly detection
  publication-title: 2018 11th International Conference on Human System Interaction (HSI)
– volume: 13
  year: 2017
  ident: b29
  article-title: Groupfound: An effective approach to detect suspicious accounts in online social networks
  publication-title: Int J Distrib Sens Netw
– start-page: 511
  year: 2016
  end-page: 518
  ident: b130
  article-title: Collective contextual anomaly detection framework for smart buildings
  publication-title: 2016 international joint conference on neural networks (IJCNN)
– start-page: 267
  year: 2017
  end-page: 275
  ident: b144
  article-title: Hierarchical time series feature extraction for power consumption anomaly detection
  publication-title: Advanced computational methods in energy, power, electric vehicles, and their integration
– volume: 5
  start-page: 4567
  year: 2018
  end-page: 4579
  ident: b205
  article-title: City scanner: Building and scheduling a mobile sensing platform for smart city services
  publication-title: IEEE Internet Things J
– reference: Chahla C, Snoussi H, Merghem-Boulahia L, Esseghir M. A novel approach for anomaly detection in power consumption data. In: 8th international conference on pattern recognition applications and methods, Prague, Czech Republic; 2019.
– volume: 21
  year: 2020
  ident: b106
  article-title: Using multiple data sources to detect manipulated electricity meter by an entropy-inspired metric
  publication-title: Sustain Energy Grids Netw
– volume: 14
  start-page: 1606
  year: 2018
  end-page: 1615
  ident: b67
  article-title: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids
  publication-title: IEEE Trans Ind Inf
– start-page: 1
  year: 2020
  end-page: 5
  ident: b7
  article-title: Efficient multi-descriptor fusion for non-intrusive appliance recognition
  publication-title: The IEEE international symposium on circuits and systems (ISCAS)
– volume: WS-11-07
  year: 2011
  ident: b40
  article-title: Detecting anomalous sensor events in smart home data for enhancing the living experience.
  publication-title: Artificial intelligence and smarter living
– volume: 267
  year: 2020
  ident: b16
  article-title: Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree
  publication-title: Appl Energy
– start-page: 63
  year: 2019
  end-page: 79
  ident: b135
  article-title: Anomalydetect: an online distance-based anomaly detection algorithm
  publication-title: Web services–ICWS 2019
– volume: 157
  start-page: 336
  year: 2018
  end-page: 352
  ident: b173
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
– volume: 3
  start-page: 66
  year: 2017
  end-page: 102
  ident: b178
  article-title: An unsupervised anomaly detection approach using energy-based spatiotemporal graphical modeling
  publication-title: Cyber-Phys Syst
– volume: 13
  start-page: 3376
  year: 2019
  end-page: 3387
  ident: b11
  article-title: The role of micro-moments: A survey of habitual behavior change and recommender systems for energy saving
  publication-title: IEEE Syst J
– volume: 38
  start-page: 27
  year: 2014
  end-page: 37
  ident: b170
  article-title: Anomaly detection for visual analytics of power consumption data
  publication-title: Comput Graph
– volume: 13
  start-page: 651
  year: 2016
  end-page: 665
  ident: b47
  article-title: A new approach to dimensionality reduction for anomaly detection in data traffic
  publication-title: IEEE Trans Netw Serv Manag
– start-page: 120
  year: 2016
  end-page: 129
  ident: b107
  article-title: Fraud detection in energy consumption: A supervised approach
  publication-title: 2016 IEEE international conference on data science and advanced analytics (DSAA)
– volume: 149
  start-page: 711
  year: 2017
  end-page: 722
  ident: b172
  article-title: Early-warning application for real-time detection of energy consumption anomalies in buildings
  publication-title: Journal of Cleaner Production
– start-page: 4169
  year: 2018
  end-page: 4174
  ident: b137
  article-title: Anomaly detection for power consumption data based on isolated forest
  publication-title: 2018 international conference on power system technology (POWERCON)
– start-page: 1
  year: 2020
  end-page: 25
  ident: b54
  article-title: Smart power consumption abnormality detection in buildings using micro-moments and improved K-nearest neighbors
  publication-title: Int J Intell Syst
– start-page: 734
  year: 2015
  end-page: 741
  ident: b122
  article-title: Extracting baseline electricity usage using gradient tree boosting
  publication-title: 2015 IEEE international conference on smart city/socialcom/sustaincom (SmartCity)
– volume: 61
  start-page: 89
  year: 2014
  end-page: 97
  ident: b164
  article-title: Graph-based approach for outlier detection in sequential data and its application on stock market and weather data
  publication-title: Knowl Based Syst
– year: 2020
  ident: b227
  article-title: Dig, your energy consultant
– volume: 183
  start-page: 107212
  year: 2020
  ident: b203
  article-title: Anomaly detection based on machine learning in iot-based vertical plant wall for indoor climate control
  publication-title: Buil Environ
– start-page: 426
  year: 2021
  end-page: 435
  ident: b100
  article-title: Bayesian anomaly detection and classification for noisy data
  publication-title: Intelligent systems design and applications
– volume: 21
  start-page: 1332
  year: 2019
  end-page: 1344
  ident: b118
  article-title: Boosting positive and unlabeled learning for anomaly detection with multi-features
  publication-title: IEEE Trans Multimed
– year: 2020
  ident: b225
  article-title: Homepulse: Creating value from energy data: the disaggregation challenge
– start-page: 188
  year: 2021
  end-page: 205
  ident: b1
  article-title: On the applicability of 2d local binary patterns for identifying electrical appliances in non-intrusive load monitoring
– start-page: 135
  year: 2018
  end-page: 140
  ident: b35
  article-title: Detection of electricity theft in customer consumption using outlier detection algorithms
  publication-title: 2018 1st international conference on data intelligence and security (ICDIS)
– start-page: 1
  year: 2017
  end-page: 9
  ident: b174
  article-title: Compressive spectral anomaly detection
  publication-title: 2017 IEEE International Conference on Computational Photography (ICCP)
– start-page: 1
  year: 2019
  end-page: 27
  ident: b25
  article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies
  publication-title: Trans Emerg Telecommun Technol
– volume: 105
  year: 2020
  ident: b74
  article-title: Igan-ids: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks
  publication-title: Ad Hoc Netw
– start-page: 1
  year: 2017
  end-page: 6
  ident: b146
  article-title: Graph-based anomaly detection on smart grid data
  publication-title: The thirtieth international flairs conference
– volume: 26
  start-page: 277
  year: 2019
  end-page: 281
  ident: b42
  article-title: One-class convolutional neural network
  publication-title: IEEE Signal Process Lett
– volume: 100
  start-page: 143
  year: 2019
  end-page: 174
  ident: b230
  article-title: Blockchain technology in the energy sector: a systematic review of challenges and opportunities
  publication-title: Renewable and Sustainable Energy Reviews
– start-page: 1
  year: 2019
  end-page: 24
  ident: b249
  article-title: Visual analytics of anomalous user behaviors: A survey
– start-page: 1
  year: 2020
  end-page: 22
  ident: b4
  article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalised recommendations for energy efficiency
  publication-title: Int J Intell Syst
– volume: 63
  start-page: 102420
  year: 2020
  ident: b187
  article-title: Occupant presence and behavior: a major issue for building energy performance simulation and assessment
  publication-title: Sustain Cities Soc
– start-page: 1
  year: 2020
  end-page: 33
  ident: b262
  article-title: A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects
  publication-title: Inf Fusion
– start-page: 1
  year: 2006
  end-page: 6
  ident: b108
  article-title: Outlier detection in wireless sensor networks using Bayesian belief networks
  publication-title: 2006 1st international conference on communication systems software middleware
– volume: 114
  start-page: 341
  year: 2017
  end-page: 348
  ident: b43
  article-title: The application of one-class classifier based on cnn in image defect detection
  publication-title: Procedia Comput Sci
– start-page: 1
  year: 2018
  end-page: 10
  ident: b156
  article-title: Anomaly detection models for IoT time series data
– volume: 7
  start-page: 96334
  year: 2019
  end-page: 96348
  ident: b197
  article-title: PPETD: Privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 22
  ident: b2
  article-title: Reshaping consumption habits by exploiting energy-related micro-moment recommendations: a case study
  publication-title: Communications in computer and information science
– start-page: 1
  year: 2017
  end-page: 5
  ident: b157
  article-title: A semi-supervised anomaly detection method for wind farm power data preprocessing
  publication-title: 2017 IEEE power energy society general meeting
– start-page: 16
  year: 2018
  end-page: 25
  ident: b18
  article-title: Monitor: An abnormality detection approach in buildings energy consumption
  publication-title: 2018 IEEE 4th international conference on collaboration and internet computing (CIC)
– year: 2018
  ident: b41
  article-title: Anomaly detection using one-class neural networks
– volume: 26
  year: 2019
  ident: b68
  article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Struct Control Health Monit
– start-page: 1
  year: 2018
  end-page: 6
  ident: b145
  article-title: A feature-based method for automatic anomaly identification in power quality measurements
  publication-title: 2018 IEEE international conference on probabilistic methods applied to power systems (PMAPS)
– start-page: 610
  year: 2011
  end-page: 619
  ident: b102
  article-title: Anomaly detection in categorical datasets using Bayesian networks
  publication-title: Artificial intelligence and computational intelligence, Vol. 7003
– volume: 33
  start-page: 400
  year: 2014
  end-page: 411
  ident: b98
  article-title: Real-time detection of anomalous power consumption
  publication-title: Renew Sustain Energy Rev
– start-page: 1017
  year: 2017
  end-page: 1025
  ident: b179
  article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 55
  start-page: 278
  year: 2016
  end-page: 288
  ident: b160
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener Comput Syst
– start-page: 1
  year: 2020
  end-page: 18
  ident: b216
  article-title: Techno-economic analysis of building energy efficiency systems based on behavioral change: A case study of a novel micro-moments based solution
  publication-title: Appl Energy
– volume: 6
  start-page: 132
  year: 2011
  end-page: 147
  ident: b56
  article-title: Application of multiple discriminant analysis (mda) as a credit scoring and risk assessment model
  publication-title: Int J Emerging Mark
– start-page: 3570
  year: 2014
  end-page: 3575
  ident: b109
  article-title: Statistical anomaly detection in mean and variation of energy consumption
  publication-title: Proceedings of the 2014 22nd international conference on pattern recognition
– start-page: 29
  year: 2019
  end-page: 41
  ident: b139
  article-title: Adsas: comprehensive real-time anomaly detection system
  publication-title: Information security applications
– start-page: 17
  year: 2011
  end-page: 24
  ident: b117
  article-title: Approach based ensemble methods for better and faster intrusion detection
  publication-title: Computational intelligence in security for information systems
– start-page: 771
  year: 2019
  end-page: 780
  ident: b147
  article-title: Big data platform for smart grids power consumption anomaly detection
  publication-title: 2019 federated conference on computer science and information systems (FedCSIS)
– start-page: 1
  year: 2019
  end-page: 6
  ident: b256
  article-title: Towards efficient and privacy-preserving federated deep learning
  publication-title: ICC 2019 - 2019 IEEE International Conference on Communications (ICC)
– start-page: 71
  year: 2020
  end-page: 74
  ident: b71
  article-title: Gan-based anomaly detection and localization of multivariate time series data for power plant
  publication-title: 2020 IEEE international conference on big data and smart computing (BigComp)
– start-page: 33
  year: 2018
  end-page: 42
  ident: b184
  article-title: Rimor: Towards identifying anomalous appliances in buildings
  publication-title: BuildSys ’18
– start-page: 33
  year: 2019
  end-page: 40
  ident: b55
  article-title: Edge mining on IoT devices using anomaly detection
  publication-title: 2019 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC)
– start-page: 29
  year: 2010
  end-page: 33
  ident: b104
  article-title: Outlier detection in smart environment structured power datasets
  publication-title: 2010 sixth international conference on intelligent environments
– start-page: 1
  year: 2020
  end-page: 18
  ident: b251
  article-title: Interactive visual analytics for residential energy big data
  publication-title: Inform Vis
– volume: 158
  start-page: 1533
  year: 2018
  end-page: 1543
  ident: b119
  article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings
  publication-title: Energy Build
– start-page: 1
  year: 2020
  end-page: 8
  ident: b261
  article-title: A micro-moment system for domestic energy efficiency analysis
  publication-title: IEEE Syst J
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: b116
  article-title: Recent progress of anomaly detection
  publication-title: Complexity
– volume: 26
  start-page: 1
  year: 2020
  end-page: 10
  ident: b260
  article-title: Digital technologies in the public-health response to COVID-19
  publication-title: Nature Med
– volume: 27
  start-page: 486
  year: 2013
  end-page: 495
  ident: b93
  article-title: Support vector regression for anomaly detection from measurement histories
  publication-title: Adv Eng Inform
– volume: 29
  start-page: 93
  year: 2000
  end-page: 104
  ident: b154
  article-title: Lof: Identifying density-based local outliers
  publication-title: SIGMOD Rec
– start-page: 250
  year: 2011
  end-page: 255
  ident: b175
  article-title: Distributed anomaly event detection in wireless networks using compressed sensing
  publication-title: 2011 11th International Symposium on Communications Information Technologies (ISCIT)
– volume: 279
  start-page: 115872
  year: 2020
  ident: b209
  article-title: Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction
  publication-title: Appl Energy
– volume: 17
  start-page: 2367
  year: 2015
  end-page: 2408
  ident: b37
  article-title: An entropy-based network anomaly detection method
  publication-title: Entropy
– start-page: 265
  year: 2014
  end-page: 276
  ident: b254
  article-title: NILMTK: An open source toolkit for non-intrusive load monitoring
  publication-title: Proceedings of the 5th International Conference on Future Energy Systems
– volume: 56
  start-page: 242
  year: 2016
  end-page: 255
  ident: b150
  article-title: Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach
  publication-title: Expert Syst Appl
– volume: 6
  start-page: 9623
  year: 2018
  end-page: 9631
  ident: b128
  article-title: Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things
  publication-title: IEEE Access
– start-page: 263
  year: 2014
  end-page: 270
  ident: b212
  article-title: Concept drift detection based on anomaly analysis
  publication-title: Neural Information Processing
– start-page: 413
  year: 2008
  end-page: 422
  ident: b138
  article-title: Isolation forest
  publication-title: 2008 eighth IEEE international conference on data mining
– start-page: 8325
  year: 2019
  end-page: 8329
  ident: b23
  article-title: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection
  publication-title: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– start-page: 1
  year: 2008
  end-page: 4
  ident: b115
  article-title: Anomaly detection by combining decision trees and parametric densities
  publication-title: 2008 19th international conference on pattern recognition
– start-page: 1
  year: 2017
  end-page: 6
  ident: b87
  article-title: A multi-layer perceptron approach for flow-based anomaly detection
  publication-title: 2017 international symposium on networks, computers and communications (ISNCC)
– volume: WS-11-07
  year: 2011
  ident: b153
  article-title: Energy outlier detection in smart environments
  publication-title: Artificial intelligence and smarter living
– start-page: 134
  year: 2010
  end-page: 141
  ident: b89
  article-title: Construction cosine radial basic function neural networks based on artificial immune networks
  publication-title: Advanced data mining and applications
– start-page: 407
  year: 2016
  end-page: 418
  ident: b193
  article-title: F-DETA: A framework for detecting electricity theft attacks in smart grids
  publication-title: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
– start-page: 1409
  year: 2018
  end-page: 1416
  ident: b69
  article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data
  publication-title: The thirty-third aaai conference on artificial intelligence (AAAI-19)
– year: 2017
  ident: b233
  article-title: Energy disaggregation for identifying anomalous appliance
  publication-title: Proceedings of the 4th ACM International Conference on Systems for Energy-Efficient Built Environments
– volume: 9
  start-page: 1089
  year: 2016
  end-page: 1100
  ident: b134
  article-title: Distance-based outlier detection in data streams
  publication-title: Proc VLDB Endow
– start-page: 1
  year: 2019
  end-page: 18
  ident: b26
  article-title: Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine
  publication-title: J Mar Eng Technol
– volume: 260
  year: 2020
  ident: b8
  article-title: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability
  publication-title: J Clean Prod
– volume: 9
  start-page: 1
  year: 2020
  end-page: 16
  ident: b33
  article-title: Combining K-means and xgboost models for anomaly detection using log datasets
  publication-title: Electronics
– volume: 68
  year: 2020
  ident: b12
  article-title: Coronavirus comes home? energy use, home energy management, and the social-psychological factors of covid-19
  publication-title: Energy Res Soc Sci
– start-page: 1
  year: 2017
  end-page: 6
  ident: b127
  article-title: Anomaly detection using random forest: A performance revisited
  publication-title: 2017 international conference on data and software engineering (ICoDSE)
– volume: 32
  start-page: 948
  year: 2016
  end-page: 956
  ident: b101
  article-title: Probabilistic anomaly detection in natural gas time series data
  publication-title: Int J Forecasting
– year: 2020
  ident: b221
  article-title: Wibeee
– start-page: 002313
  year: 2016
  end-page: 002318
  ident: b32
  article-title: Anomaly detection in smart grid data: An experience report
  publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC)
– start-page: 740
  year: 2018
  end-page: 745
  ident: b192
  article-title: Deep recurrent electricity theft detection in AMI networks with random tuning of hyper-parameters
  publication-title: 2018 24th International Conference on Pattern Recognition (ICPR)
– start-page: 151
  year: 2008
  end-page: 156
  ident: b36
  article-title: An empirical evaluation of entropy-based traffic anomaly detection
  publication-title: IMC ’08
– start-page: 2813
  year: 2019
  end-page: 2821
  ident: b213
  article-title: Concept drift adaption for online anomaly detection in structural health monitoring
  publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management
– volume: 55
  start-page: 278
  year: 2016
  end-page: 288
  ident: b28
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener Comput Syst
– start-page: 1
  year: 2019
  end-page: 9.
  ident: b165
  article-title: Parallel graph-based anomaly detection technique for sequential data
  publication-title: J King Saud Univ Comput Inform Sci
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 15
  ident: b143
  article-title: Anomaly detection in smart metering infrastructure with the use of time series analysis
  publication-title: J Sensors
– volume: 4
  start-page: 91
  year: 2018
  end-page: 100
  ident: b215
  article-title: Power systems big data analytics: an assessment of paradigm shift barriers and prospects
  publication-title: Energy Rep
– year: 2019
  ident: b220
  article-title: Neurio
  publication-title: Neurio Sensor W1TM Overview, Product specification
– start-page: 1125
  year: 2019
  end-page: 1130
  ident: b250
  article-title: Visual anomaly detection in event sequence data
  publication-title: 2019 IEEE International Conference on Big Data (Big Data)
– start-page: 1
  year: 2021
  end-page: 12
  ident: b199
  article-title: The emergence of hybrid edge-cloud computing for energy efficiency in buildings
  publication-title: Proceedings of SAI Intelligent Systems Conference
– volume: 112
  start-page: 394
  year: 2020
  end-page: 407
  ident: b3
  article-title: Rehab-c: recommendations for energy habits change
  publication-title: Future Gener Comput Syst
– volume: 4
  start-page: 1
  year: 2018
  end-page: 25
  ident: b58
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: J Imaging
– volume: 15
  start-page: 55
  year: 2013
  end-page: 65
  ident: b158
  article-title: Application of density-based outlier detection to database activity monitoring
  publication-title: Inf Syst Front
– year: 2020
  ident: b218
  article-title: Informetis
– start-page: 1175
  year: 2015
  end-page: 1179
  ident: b114
  article-title: Decision tree learning for fraud detection in consumer energy consumption
  publication-title: 2015 IEEE 14th international conference on machine learning and applications (ICMLA)
– reference: Himeur Y, Elsalemi A, Bensaali F, Amira A. Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications. In: Proc. 25th International Conference on Pattern Recognition (ICPR), 2020. p. 1–8.
– start-page: 1
  year: 2021
  end-page: 13
  ident: b64
  article-title: Detection of appliance-level abnormal energy consumption in buildings using autoencoders and micro-moments
  publication-title: The fifth international conference on big data and internet of things (BDIoT)
– start-page: 1
  year: 2016
  end-page: 4
  ident: b92
  article-title: Anomaly detection in network traffic using extreme learning machine
  publication-title: 2016 IEEE 10th international conference on application of information and communication technologies (AICT)
– year: 2020
  ident: b222
  article-title: Smart impulse
– start-page: 1
  year: 2020
  end-page: 19
  ident: b232
  article-title: Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier
  publication-title: Sustainable Cities Soc
– volume: 6
  start-page: 1
  year: 2012
  end-page: 39
  ident: b46
  article-title: Isolation-based anomaly detection
  publication-title: ACM Trans Knowl Discov Data (TKDD)
– volume: 34
  start-page: 64
  year: 2020
  end-page: 79
  ident: b86
  article-title: Anomaly detection in power generation plants using machine learning and neural networks
  publication-title: Appl Artif Intell
– volume: 259
  year: 2020
  ident: b85
  article-title: Real-time prediction and anomaly detection of electrical load in a residential community
  publication-title: Appl Energy
– start-page: 1513
  year: 2013
  end-page: 1518
  ident: b34
  article-title: Anomaly detection in time series data using a fuzzy c-means clustering
  publication-title: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS)
– volume: 109
  start-page: 1
  year: 2019
  end-page: 8
  ident: b148
  article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids
  publication-title: Int J Electr Power Energy Syst
– start-page: 1275
  year: 2018
  end-page: 1282
  ident: b62
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
  publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA)
– start-page: 587
  year: 2016
  end-page: 591
  ident: b133
  article-title: Anomaly detection of power consumption based on waveform feature recognition
  publication-title: 2016 11th international conference on computer science education (ICCSE)
– start-page: 1
  year: 2020
  end-page: 17
  ident: b236
  article-title: The clever hans effect in anomaly detection
– volume: 144
  start-page: 191
  year: 2017
  end-page: 206
  ident: b125
  article-title: An ensemble learning framework for anomaly detection in building energy consumption
  publication-title: Energy Build
– start-page: 1
  year: 2018
  end-page: 6
  ident: b196
  article-title: Unobtrusive detection of home appliance’s usage for elderly monitoring
  publication-title: 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech)
– volume: 8
  start-page: 15047
  year: 2020
  end-page: 15055
  ident: b242
  article-title: Achieving domestic energy efficiency using micro-moments and intelligent recommendations
  publication-title: IEEE Access
– volume: 19
  year: 2019
  ident: b65
  article-title: Fusead: Unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models
  publication-title: Sensors
– volume: 20
  start-page: 1
  year: 2020
  end-page: 20
  ident: b201
  article-title: Anomaly detection based latency-aware energy consumption optimization for IoT data-flow services
  publication-title: Sensors
– start-page: 1
  year: 2020
  end-page: 24
  ident: b238
  article-title: Explainable deep one-class classification
– volume: 46
  start-page: 3490
  year: 2013
  end-page: 3506
  ident: b44
  article-title: One class random forests
  publication-title: Pattern Recognit
– volume: 121
  year: 2016
  ident: b49
  article-title: Cloud computing for energy management in smart grid - an application survey
  publication-title: IOP Conf Ser: Mater Sci Eng
– volume: 114
  start-page: 106
  year: 2020
  end-page: 117
  ident: b81
  article-title: Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method
  publication-title: Int J Refrig
– start-page: 264
  year: 2019
  end-page: 269
  ident: b194
  article-title: A sensors-based monitoring system of electrical consumptions and home parameters remotely managed by mobile app for elderly habits’ control
  publication-title: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI)
– volume: 10
  start-page: 1
  year: 2020
  end-page: 25
  ident: b245
  article-title: Application of deep reinforcement learning in traffic signal control: An overview and impact of open traffic data
  publication-title: Appl Sci
– start-page: 193
  year: 2019
  end-page: 202
  ident: b253
  article-title: Towards reproducible state-of-the-art energy disaggregation
  publication-title: BuildSys ’19
– volume: 13
  year: 2020
  ident: b75
  article-title: Generating energy data for machine learning with recurrent generative adversarial networks
  publication-title: Energies
– volume: 31
  start-page: 883
  year: 2016
  end-page: 894
  ident: b210
  article-title: Privacy-preserving energy theft detection in microgrids: A state estimation approach
  publication-title: IEEE Trans Power Syst
– start-page: 1
  year: 2017
  end-page: 7
  ident: b195
  article-title: An innovative approach for monitoring elderly behavior by detecting home appliance’s usage
  publication-title: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM)
– start-page: 312
  year: 2020
  end-page: 317
  ident: b252
  article-title: Energy data visualizations on smartphones for triggering behavioral change: Novel vs. Conventional
  publication-title: 2020 2nd Global Power, Energy and Communication Conference (GPECOM)
– volume: 145
  year: 2020
  ident: b14
  article-title: Appliance-specific feedback and social comparisons: evidence from a field experiment on energy conservation
  publication-title: Energy Policy
– volume: vol. 80
  start-page: 4393
  year: 2018
  end-page: 4402
  ident: b39
  article-title: Deep one-class classification
  publication-title: Proceedings of Machine Learning Research
– year: 2020
  ident: b140
  article-title: Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks
– volume: 14
  start-page: 1
  year: 2020
  end-page: 101
  ident: b263
  article-title: Explainable recommendation: A survey and new perspectives
  publication-title: Found Trends® Inform Retr
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  ident: b167
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl Energy
– start-page: 54
  year: 2018
  end-page: 59
  ident: b132
  article-title: Multi-feature fusion based anomaly electro-data detection in smart grid
  publication-title: 2018 15th international symposium on pervasive systems, algorithms and networks (I-SPAN)
– start-page: 96
  year: 2020
  end-page: 103
  ident: b264
  article-title: Data analytics, automations, and micro-moment based recommendations for energy efficiency
  publication-title: 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService)
– start-page: 735
  year: 2011
  end-page: 743
  ident: b48
  article-title: Conditional anomaly detection with soft harmonic functions
  publication-title: 2011 IEEE 11th international conference on data mining
– volume: 54
  year: 2020
  ident: b5
  article-title: Changing energy cultures? household energy use before and after a building energy efficiency retrofit
  publication-title: Sustain Cities Soc
– volume: 77
  start-page: 34
  year: 2018
  end-page: 47
  ident: b96
  article-title: Scalable prediction-based online anomaly detection for smart meter data
  publication-title: Inf Syst
– volume: 64
  start-page: 99
  year: 2020
  end-page: 120
  ident: b10
  article-title: Data fusion strategies for energy efficiency in buildings: overview, challenges and novel orientations
  publication-title: Inf Fusion
– volume: 7
  start-page: 139712
  year: 2019
  end-page: 139725
  ident: b168
  article-title: Sample efficient home power anomaly detection in real time using semi-supervised learning
  publication-title: IEEE Access
– start-page: 1296
  year: 2018
  end-page: 1303
  ident: b190
  article-title: Occupancy detection in smart housing using both aggregated and appliance-specific power consumption data
  publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
– start-page: 1
  year: 2020
  end-page: 5
  ident: b17
  article-title: Appliance-level monitoring with micro-moment smart plugs
  publication-title: The fifth international conference on smart city applications (SCA)
– start-page: 1
  year: 2019
  end-page: 17
  ident: b131
  article-title: Statistical analysis of nearest neighbor methods for anomaly detection
  publication-title: The 33rd conference on neural information processing systems (NeurIPS 2019)
– year: 2020
  ident: b224
  article-title: Voltaware
– volume: 211
  year: 2020
  ident: b6
  article-title: The use of artificial intelligence (ai) methods in the prediction of thermal comfort in buildings: energy implications of ai-based thermal comfort controls
  publication-title: Energy Build
– start-page: 1
  year: 2014
  end-page: 24
  ident: b185
  article-title: Monitoring and fault detection of electrical appliances for ambient intelligence
  publication-title: United States Patent, no. US9476935B2
– start-page: 1
  year: 2021
  end-page: 13
  ident: b241
  article-title: Endorsing energy efficiency through accurate appliance-level power monitoring, automation and data visualization
  publication-title: The 4th International Conference on Networking, Information Systems & Security (NISS 2021)
– start-page: 1
  year: 2019
  end-page: 14
  ident: b27
  article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system
  publication-title: Int J Inf Technol
– start-page: 2737
  year: 2019
  end-page: 2741
  ident: b142
  article-title: Canonical correlation based feature extraction with application to anomaly detection in electric appliances
  publication-title: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 61
  year: 2020
  ident: b9
  article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads
  publication-title: Sustain Cities Soc
– start-page: 1
  year: 2020
  end-page: 11
  ident: b200
  article-title: Edge computing enabled production anomalies detection and energy-efficient production decision approach for discrete manufacturing workshops
  publication-title: IEEE Access
– volume: 162
  start-page: 102659
  year: 2020
  ident: b214
  article-title: Confidence guided anomaly detection model for anti-concept drift in dynamic logs
  publication-title: J Netw Comput Appl
– volume: 7
  start-page: 62721
  year: 2019
  end-page: 62733
  ident: b22
  article-title: Performance evaluation of techniques for identifying abnormal energy consumption in buildings
  publication-title: IEEE Access
– start-page: 115
  year: 1998
  end-page: 128
  ident: b50
  article-title: Multiple discriminant analysis
– year: 2020
  ident: b228
  article-title: Real-time energy monitoring software
– volume: 6
  start-page: 7659
  year: 2019
  end-page: 7669
  ident: b198
  article-title: Energy theft detection with energy privacy preservation in the smart grid
  publication-title: IEEE Internet Things J
– volume: 6
  start-page: 7175
  year: 2019
  end-page: 7182
  ident: b191
  article-title: Classification of occupancy sensor anomalies in connected indoor lighting systems
  publication-title: IEEE Internet Things J
– start-page: 1
  year: 2020
  end-page: 16
  ident: b45
  article-title: Performance analysis of machine learning classifiers for non-technical loss detection
  publication-title: J Ambient Intell Humaniz Comput
– volume: 20
  start-page: 1773
  year: 2014
  end-page: 1782
  ident: b248
  article-title: #FluxFlow: Visual analysis of anomalous information spreading on social media
  publication-title: IEEE Trans Vis Comput Graphics
– start-page: 1
  year: 2011
  end-page: 8
  ident: b94
  article-title: Anomaly detection in premise energy consumption data
  publication-title: 2011 IEEE power and energy society general meeting
– start-page: 867
  year: 2018
  end-page: 873
  ident: b141
  article-title: Anomaly detection for power consumption patterns in electricity early warning system
  publication-title: 2018 tenth international conference on advanced computational intelligence (ICACI)
– year: 2020
  ident: b207
  article-title: Power laws: Detecting anomalies in usage
– start-page: 545
  year: 2015
  end-page: 575
  ident: b99
  publication-title: Probabilistic modeling in machine learning
– start-page: 1
  year: 2019
  end-page: 6
  ident: b111
  article-title: Smart grid energy fraud detection using SVM
  publication-title: 2019 international conference on networking and advanced systems (ICNAS)
– volume: 33
  start-page: 41
  year: 2017
  end-page: 56
  ident: b181
  article-title: Spatial anomaly detection in sensor networks using neighborhood information
  publication-title: Inform Fusion
– start-page: 1
  year: 2019
  end-page: 18.
  ident: b53
  article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data
  publication-title: Wirel Netw
– volume: 5
  start-page: 26512
  year: 2017
  end-page: 26520
  ident: b159
  article-title: A data-driven clustering approach for fault diagnosis
  publication-title: IEEE Access
– year: 2020
  ident: b182
  article-title: Enetics
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 12
  ident: b66
  article-title: Electricity theft detection in power grids with deep learning and random forests
  publication-title: J Electr Comput Eng
– start-page: 600
  year: 2001
  end-page: 604
  ident: b51
  article-title: A pca classifier and its application in vehicle detection
  publication-title: IJCNN’01. international joint conference on neural networks. Proceedings (Cat. No. 01CH37222), Vol. 1
– volume: 6
  start-page: 132
  year: 2011
  end-page: 147
  ident: b57
  article-title: Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model
  publication-title: Int J Emerging Mark
– start-page: 5
  year: 2012
  end-page: 8
  ident: b177
  article-title: Fast anomaly detection in smartgrids via sparse approximation theory
  publication-title: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM)
– start-page: 1258
  year: 2019
  end-page: 1263
  ident: b183
  article-title: Towards behavioral profiling based anomaly detection for smart homes
  publication-title: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)
– volume: 14
  start-page: 1796
  year: 2020
  end-page: 1816
  ident: b103
  article-title: Anomaly detection in smart homes using Bayesian networks
  publication-title: KSII Trans Internet Inf Syst
– start-page: 5107
  year: 2016
  end-page: 5110
  ident: b38
  article-title: An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery
  publication-title: 2016 IEEE international geoscience and remote sensing symposium (IGARSS)
– start-page: 115739
  year: 2020
  ident: b257
  article-title: Covid-19: impact analysis and recommendations for power sector operation
  publication-title: Appl Energy
– volume: 9
  start-page: 1
  issue: 7
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b33
  article-title: Combining K-means and xgboost models for anomaly detection using log datasets
  publication-title: Electronics
  doi: 10.3390/electronics9071164
– volume: 267
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b16
  article-title: Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114877
– start-page: 45
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b208
  article-title: Loced: Location-aware energy disaggregation framework
– ident: 10.1016/j.apenergy.2021.116601_b80
  doi: 10.5220/0007361704830490
– volume: 2
  start-page: 305
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b255
  article-title: Secure, privacy-preserving and federated machine learning in medical imaging
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-020-0186-1
– start-page: 426
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b100
  article-title: Bayesian anomaly detection and classification for noisy data
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b140
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b146
  article-title: Graph-based anomaly detection on smart grid data
– start-page: 311
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b235
  article-title: Toward explainable deep neural network based anomaly detection
– start-page: 1
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b110
  article-title: Support vector machine based data classification for detection of electricity theft
– volume: 38
  start-page: 27
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b170
  article-title: Anomaly detection for visual analytics of power consumption data
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2013.10.006
– start-page: 589
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b176
  article-title: Anomaly detection in big data with separable compressive sensing
– volume: 238
  start-page: 796
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b20
  article-title: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour?
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.061
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b145
  article-title: A feature-based method for automatic anomaly identification in power quality measurements
– start-page: 29
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b139
  article-title: Adsas: comprehensive real-time anomaly detection system
– start-page: 134
  year: 2010
  ident: 10.1016/j.apenergy.2021.116601_b89
  article-title: Construction cosine radial basic function neural networks based on artificial immune networks
– year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b233
  article-title: Energy disaggregation for identifying anomalous appliance
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b169
  article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2017/8501683
– volume: 7
  start-page: 2169
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b60
  article-title: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886583
– volume: 7
  start-page: 62721
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b22
  article-title: Performance evaluation of techniques for identifying abnormal energy consumption in buildings
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915641
– start-page: 151
  year: 2008
  ident: 10.1016/j.apenergy.2021.116601_b36
  article-title: An empirical evaluation of entropy-based traffic anomaly detection
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b195
  article-title: An innovative approach for monitoring elderly behavior by detecting home appliance’s usage
– start-page: 286
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b244
  article-title: Deep learning vs. Discrete reinforcement learning for adaptive traffic signal control
– volume: 149
  start-page: 711
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b172
  article-title: Early-warning application for real-time detection of energy consumption anomalies in buildings
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.02.028
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b116
  article-title: Recent progress of anomaly detection
  publication-title: Complexity
  doi: 10.1155/2019/2686378
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b196
  article-title: Unobtrusive detection of home appliance’s usage for elderly monitoring
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b131
  article-title: Statistical analysis of nearest neighbor methods for anomaly detection
– volume: 8
  start-page: 15047
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b242
  article-title: Achieving domestic energy efficiency using micro-moments and intelligent recommendations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966640
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b45
  article-title: Performance analysis of machine learning classifiers for non-technical loss detection
  publication-title: J Ambient Intell Humaniz Comput
– volume: 279
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b13
  article-title: The relationship between air pollution and covid-19-related deaths: an application to three french cities
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115835
– volume: 33
  start-page: 41
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b181
  article-title: Spatial anomaly detection in sensor networks using neighborhood information
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2016.04.007
– start-page: 5
  year: 2012
  ident: 10.1016/j.apenergy.2021.116601_b177
  article-title: Fast anomaly detection in smartgrids via sparse approximation theory
– volume: 4
  start-page: 91
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b215
  article-title: Power systems big data analytics: an assessment of paradigm shift barriers and prospects
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2017.11.002
– volume: 4
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b58
  article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos
  publication-title: J Imaging
  doi: 10.3390/jimaging4020036
– start-page: 413
  year: 2008
  ident: 10.1016/j.apenergy.2021.116601_b138
  article-title: Isolation forest
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b30
  article-title: Annotation-free learning of plankton for classification and anomaly detection
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68662-3
– volume: 227
  start-page: 110404
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b211
  article-title: Building power consumption datasets: survey, taxonomy and future directions
  publication-title: Energy Buil
  doi: 10.1016/j.enbuild.2020.110404
– volume: 17
  start-page: 2367
  issue: 4
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b37
  article-title: An entropy-based network anomaly detection method
  publication-title: Entropy
  doi: 10.3390/e17042367
– volume: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b97
  article-title: A new anomaly detection system for school electricity consumption data
  publication-title: Information
  doi: 10.3390/info8040151
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b256
  article-title: Towards efficient and privacy-preserving federated deep learning
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b17
  article-title: Appliance-level monitoring with micro-moment smart plugs
– start-page: 263
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b212
  article-title: Concept drift detection based on anomaly analysis
– volume: 14
  start-page: 1796
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b103
  article-title: Anomaly detection in smart homes using Bayesian networks
  publication-title: KSII Trans Internet Inf Syst
– start-page: 2813
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b213
  article-title: Concept drift adaption for online anomaly detection in structural health monitoring
– volume: 12
  start-page: 1381
  issue: 6
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b19
  article-title: A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks
  publication-title: Cogn Comput
  doi: 10.1007/s12559-020-09764-y
– volume: 157
  start-page: 336
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b173
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.127
– start-page: 894
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b59
– start-page: 587
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b133
  article-title: Anomaly detection of power consumption based on waveform feature recognition
– start-page: 141
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b76
  article-title: Collective anomaly detection based on long short-term memory recurrent neural networks
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b2
  article-title: Reshaping consumption habits by exploiting energy-related micro-moment recommendations: a case study
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b231
  article-title: An intelligent non-intrusive load monitoring scheme based on 2D phase encoding of power signals
  publication-title: Int J Intell Syst
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b143
  article-title: Anomaly detection in smart metering infrastructure with the use of time series analysis
  publication-title: J Sensors
  doi: 10.1155/2017/8782131
– volume: 29
  start-page: 626
  issn: 1384-5810
  issue: 3
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b162
  article-title: Graph based anomaly detection and description: A survey
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-014-0365-y
– start-page: 734
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b122
  article-title: Extracting baseline electricity usage using gradient tree boosting
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b222
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b7
  article-title: Efficient multi-descriptor fusion for non-intrusive appliance recognition
– volume: 7
  start-page: 139712
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b168
  article-title: Sample efficient home power anomaly detection in real time using semi-supervised learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2943667
– volume: 46
  start-page: 3490
  issue: 12
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b44
  article-title: One class random forests
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.05.022
– volume: 6
  start-page: 132
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b56
  article-title: Application of multiple discriminant analysis (mda) as a credit scoring and risk assessment model
  publication-title: Int J Emerging Mark
  doi: 10.1108/17468801111119498
– start-page: 771
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b147
  article-title: Big data platform for smart grids power consumption anomaly detection
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b87
  article-title: A multi-layer perceptron approach for flow-based anomaly detection
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b229
– start-page: 8325
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b23
  article-title: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection
– volume: 5
  start-page: 26512
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b159
  article-title: A data-driven clustering approach for fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2771365
– start-page: 487
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b61
  article-title: Power consumption predicting and anomaly detection based on long short-term memory neural network
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b180
  article-title: Anomaly behaviour detection based on meta-morisita index for large scale spatio-temporal data set
  publication-title: J Big Data
  doi: 10.1186/s40537-018-0133-8
– volume: 105
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b74
  article-title: Igan-ids: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2020.102177
– start-page: 193
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b253
  article-title: Towards reproducible state-of-the-art energy disaggregation
– volume: WS-11-07
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b153
  article-title: Energy outlier detection in smart environments
– volume: 27
  start-page: 486
  issue: 4
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b93
  article-title: Support vector regression for anomaly detection from measurement histories
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2013.03.002
– ident: 10.1016/j.apenergy.2021.116601_b234
– volume: 9
  start-page: 1
  issn: 2076-3417
  issue: 19
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b202
  article-title: Smartfog: Training the fog for the energy-saving analytics of smart-meter data
  publication-title: Appl Sci
  doi: 10.3390/app9194193
– start-page: 4921
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b78
  article-title: Energy anomaly detection with forecasting and deep learning
– volume: 7
  start-page: 96334
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b197
  article-title: PPETD: Privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925322
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b54
  article-title: Smart power consumption abnormality detection in buildings using micro-moments and improved K-nearest neighbors
  publication-title: Int J Intell Syst
– volume: 21
  start-page: 3133
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b246
  article-title: Applications of deep reinforcement learning in communications and networking: A survey
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2019.2916583
– start-page: 916
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b121
  article-title: Employing gradient boosting and anomaly detection for prediction of frauds in energy consumption
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b218
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b156
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b223
– volume: 2019
  start-page: 1
  issn: 2090-0147
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b66
  article-title: Electricity theft detection in power grids with deep learning and random forests
  publication-title: J Electr Comput Eng
  doi: 10.1155/2019/4136874
– volume: 14
  start-page: 1175
  issue: 3
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b206
  article-title: Real-time pricing by data fusion on networks
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2776251
– volume: 61
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b9
  article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102283
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b243
  article-title: Deep reinforcement learning for real-world anomaly detection in surveillance videos
– start-page: 511
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b130
  article-title: Collective contextual anomaly detection framework for smart buildings
– volume: 14
  start-page: 1606
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b67
  article-title: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2785963
– volume: 56
  start-page: 242
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b150
  article-title: Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.03.002
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b167
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.005
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b227
– volume: 145
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b14
  article-title: Appliance-specific feedback and social comparisons: evidence from a field experiment on energy conservation
  publication-title: Energy Policy
– start-page: 1275
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b62
  article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b226
– start-page: 77
  year: 2012
  ident: 10.1016/j.apenergy.2021.116601_b152
  article-title: Computational intelligence based anomaly detection for building energy management systems
– volume: 54
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b5
  article-title: Changing energy cultures? household energy use before and after a building energy efficiency retrofit
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2019.101983
– start-page: 545
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b99
– start-page: 610
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b102
  article-title: Anomaly detection in categorical datasets using Bayesian networks
– volume: 6
  start-page: 7659
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b198
  article-title: Energy theft detection with energy privacy preservation in the smart grid
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2903312
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b200
  article-title: Edge computing enabled production anomalies detection and energy-efficient production decision approach for discrete manufacturing workshops
  publication-title: IEEE Access
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b182
– start-page: 735
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b48
  article-title: Conditional anomaly detection with soft harmonic functions
– volume: 19
  start-page: 1
  issue: 24
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b88
  article-title: Anomaly detections for manufacturing systems based on sensor data—Insights into two challenging real-world production settings
  publication-title: Sensors
  doi: 10.3390/s19245370
– start-page: 597
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b240
  article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing
– volume: 114
  start-page: 341
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b43
  article-title: The application of one-class classifier based on cnn in image defect detection
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.09.040
– start-page: 1409
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b69
  article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data
– start-page: 310
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b63
  article-title: A distributed anomaly detection method of operation energy consumption using smart meter data
– volume: 32
  start-page: 948
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b101
  article-title: Probabilistic anomaly detection in natural gas time series data
  publication-title: Int J Forecasting
  doi: 10.1016/j.ijforecast.2015.06.001
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b260
  article-title: Digital technologies in the public-health response to COVID-19
  publication-title: Nature Med
  doi: 10.1038/s41591-020-1011-4
– start-page: 63
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b135
  article-title: Anomalydetect: an online distance-based anomaly detection algorithm
– volume: 55
  start-page: 278
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b28
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.01.001
– volume: 21
  start-page: 1332
  issue: 5
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b118
  article-title: Boosting positive and unlabeled learning for anomaly detection with multi-features
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2018.2871421
– volume: 22
  start-page: 121
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b204
  article-title: Hybrid computation offloading for smart home automation in mobile cloud computing
  publication-title: Pers Ubiquitous Comput
  doi: 10.1007/s00779-017-1095-0
– start-page: 54
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b132
  article-title: Multi-feature fusion based anomaly electro-data detection in smart grid
– volume: 26
  start-page: 277
  issue: 2
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b42
  article-title: One-class convolutional neural network
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2018.2889273
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b166
– start-page: 71
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b71
  article-title: Gan-based anomaly detection and localization of multivariate time series data for power plant
– start-page: 33
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b55
  article-title: Edge mining on IoT devices using anomaly detection
– start-page: 4169
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b137
  article-title: Anomaly detection for power consumption data based on isolated forest
– volume: 51
  start-page: 1131
  issue: 11
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b83
  article-title: Anomaly detection in energy consumption for condition-based maintenance of compressed air generation systems: an approach based on artificial neural networks
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.439
– start-page: 1296
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b190
  article-title: Occupancy detection in smart housing using both aggregated and appliance-specific power consumption data
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b174
  article-title: Compressive spectral anomaly detection
– volume: 19
  start-page: 31
  issn: 0219-1377
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2021.116601_b136
  article-title: Resolution-based outlier factor: Detecting the top-n most outlying data points in engineering data
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-008-0145-3
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b111
  article-title: Smart grid energy fraud detection using SVM
– volume: 144
  start-page: 191
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b125
  article-title: An ensemble learning framework for anomaly detection in building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.02.058
– volume: 183
  start-page: 107212
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b203
  article-title: Anomaly detection based on machine learning in iot-based vertical plant wall for indoor climate control
  publication-title: Buil Environ
  doi: 10.1016/j.buildenv.2020.107212
– start-page: 002313
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b32
  article-title: Anomaly detection in smart grid data: An experience report
– volume: 162
  start-page: 102659
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b214
  article-title: Confidence guided anomaly detection model for anti-concept drift in dynamic logs
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2020.102659
– start-page: 267
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b144
  article-title: Hierarchical time series feature extraction for power consumption anomaly detection
– start-page: 561
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b189
  article-title: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data
– start-page: 120
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b107
  article-title: Fraud detection in energy consumption: A supervised approach
– volume: 100
  start-page: 143
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b230
  article-title: Blockchain technology in the energy sector: a systematic review of challenges and opportunities
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2018.10.014
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b84
  article-title: Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b165
  article-title: Parallel graph-based anomaly detection technique for sequential data
  publication-title: J King Saud Univ Comput Inform Sci
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b225
– start-page: 740
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b192
  article-title: Deep recurrent electricity theft detection in AMI networks with random tuning of hyper-parameters
– volume: 29
  start-page: 93
  issn: 0163-5808
  issue: 2
  year: 2000
  ident: 10.1016/j.apenergy.2021.116601_b154
  article-title: Lof: Identifying density-based local outliers
  publication-title: SIGMOD Rec
  doi: 10.1145/335191.335388
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b199
  article-title: The emergence of hybrid edge-cloud computing for energy efficiency in buildings
– volume: 259
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b85
  article-title: Real-time prediction and anomaly detection of electrical load in a residential community
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114145
– start-page: 115739
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b257
  article-title: Covid-19: impact analysis and recommendations for power sector operation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115739
– volume: 6
  start-page: 9623
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b128
  article-title: Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2805908
– volume: 7
  start-page: 8
  issue: 4
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b259
  article-title: Intelligent recommender systems in the COVID-19 outbreak: The case of wearable healthcare devices
  publication-title: J Soft Comput Decis Support Syst
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b127
  article-title: Anomaly detection using random forest: A performance revisited
– start-page: 1
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b157
  article-title: A semi-supervised anomaly detection method for wind farm power data preprocessing
– start-page: 29
  year: 2010
  ident: 10.1016/j.apenergy.2021.116601_b104
  article-title: Outlier detection in smart environment structured power datasets
– volume: 211
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b6
  article-title: The use of artificial intelligence (ai) methods in the prediction of thermal comfort in buildings: energy implications of ai-based thermal comfort controls
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.109807
– volume: 21
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b106
  article-title: Using multiple data sources to detect manipulated electricity meter by an entropy-inspired metric
  publication-title: Sustain Energy Grids Netw
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b219
– start-page: 157
  year: 2005
  ident: 10.1016/j.apenergy.2021.116601_b129
  article-title: Feature bagging for outlier detection
  doi: 10.1145/1081870.1081891
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b236
– volume: 6
  start-page: 7175
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b191
  article-title: Classification of occupancy sensor anomalies in connected indoor lighting systems
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2019.2914937
– volume: 13
  issue: 7
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b29
  article-title: Groupfound: An effective approach to detect suspicious accounts in online social networks
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147717722499
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b92
  article-title: Anomaly detection in network traffic using extreme learning machine
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b27
  article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system
  publication-title: Int J Inf Technol
– volume: 13
  start-page: 3376
  issue: 3
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b11
  article-title: The role of micro-moments: A survey of habitual behavior change and recommender systems for energy saving
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2019.2899832
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b207
– volume: 19
  issn: 1424-8220
  issue: 11
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b65
  article-title: Fusead: Unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models
  publication-title: Sensors
  doi: 10.3390/s19112451
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b232
  article-title: Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier
  publication-title: Sustainable Cities Soc
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b249
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b25
  article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies
  publication-title: Trans Emerg Telecommun Technol
– start-page: 1175
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b114
  article-title: Decision tree learning for fraud detection in consumer energy consumption
– year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b220
  article-title: Neurio
– ident: 10.1016/j.apenergy.2021.116601_b161
– volume: 260
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b8
  article-title: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.121082
– volume: 63
  start-page: 102420
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b187
  article-title: Occupant presence and behavior: a major issue for building energy performance simulation and assessment
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102420
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b239
  article-title: Real-time personalised energy saving recommendations
– volume: 13
  start-page: 651
  issue: 3
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b47
  article-title: A new approach to dimensionality reduction for anomaly detection in data traffic
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/TNSM.2016.2597125
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b251
  article-title: Interactive visual analytics for residential energy big data
  publication-title: Inform Vis
– start-page: 1330
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b52
  article-title: Pca-based robust anomaly detection using periodic traffic behavior
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b224
– volume: 6
  start-page: 132
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b57
  article-title: Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model
  publication-title: Int J Emerging Mark
  doi: 10.1108/17468801111119498
– start-page: 368
  year: 2010
  ident: 10.1016/j.apenergy.2021.116601_b124
  article-title: Mining outliers with ensemble of heterogeneous detectors on random subspaces
– start-page: 265
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b254
  article-title: NILMTK: An open source toolkit for non-intrusive load monitoring
– start-page: 195
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b70
  article-title: Toward an online anomaly intrusion detection system based on deep learning
– start-page: 703
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b73
  article-title: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks
– volume: 14
  start-page: 1
  issn: 1554-0669
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b263
  article-title: Explainable recommendation: A survey and new perspectives
  publication-title: Found Trends® Inform Retr
  doi: 10.1561/1500000066
– start-page: 193
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b105
  article-title: Online anomaly energy consumption detection using lambda architecture
– start-page: 115
  year: 1998
  ident: 10.1016/j.apenergy.2021.116601_b50
– start-page: 1
  year: 2006
  ident: 10.1016/j.apenergy.2021.116601_b108
  article-title: Outlier detection in wireless sensor networks using Bayesian belief networks
– start-page: 3570
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b109
  article-title: Statistical anomaly detection in mean and variation of energy consumption
– volume: 101
  start-page: 189
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b149
  article-title: An anomaly detection framework for identifying energy theft and defective meters in smart grids
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.03.025
– volume: 61
  start-page: 89
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b164
  article-title: Graph-based approach for outlier detection in sequential data and its application on stock market and weather data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.02.008
– volume: 2
  start-page: 612
  issue: 4
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b151
  article-title: Rule-based classification of energy theft and anomalies in consumers load demand profile
  publication-title: IET Smart Grid
  doi: 10.1049/iet-stg.2019.0081
– volume: WS-11-07
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b40
  article-title: Detecting anomalous sensor events in smart home data for enhancing the living experience.
– start-page: 477
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b126
  article-title: Research on anomaly detection method for electro-data
– start-page: 188
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b1
  article-title: On the applicability of 2d local binary patterns for identifying electrical appliances in non-intrusive load monitoring
– start-page: 250
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b175
  article-title: Distributed anomaly event detection in wireless networks using compressed sensing
– volume: 10
  start-page: 1
  issue: 11
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b245
  article-title: Application of deep reinforcement learning in traffic signal control: An overview and impact of open traffic data
  publication-title: Appl Sci
  doi: 10.3390/app10114011
– start-page: 312
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b252
  article-title: Energy data visualizations on smartphones for triggering behavioral change: Novel vs. Conventional
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b261
  article-title: A micro-moment system for domestic energy efficiency analysis
  publication-title: IEEE Syst J
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b238
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b237
– volume: 112
  start-page: 394
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b3
  article-title: Rehab-c: recommendations for energy habits change
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.05.041
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b241
  article-title: Endorsing energy efficiency through accurate appliance-level power monitoring, automation and data visualization
– year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b24
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b26
  article-title: Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine
  publication-title: J Mar Eng Technol
– volume: 7
  start-page: 9645
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b79
  article-title: Drift-aware methodology for anomaly detection in smart grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891315
– start-page: 1258
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b183
  article-title: Towards behavioral profiling based anomaly detection for smart homes
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b216
  article-title: Techno-economic analysis of building energy efficiency systems based on behavioral change: A case study of a novel micro-moments based solution
  publication-title: Appl Energy
– volume: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b75
  article-title: Generating energy data for machine learning with recurrent generative adversarial networks
  publication-title: Energies
  doi: 10.3390/en13010130
– volume: 279
  start-page: 115872
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b209
  article-title: Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115872
– start-page: 96
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b264
  article-title: Data analytics, automations, and micro-moment based recommendations for energy efficiency
– start-page: 375
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b72
  article-title: Time series anomaly detection based on GAN
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b262
  article-title: A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects
  publication-title: Inf Fusion
– volume: 114
  start-page: 106
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b81
  article-title: Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2020.02.035
– volume: 20
  start-page: 1773
  issue: 12
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b248
  article-title: #FluxFlow: Visual analysis of anomalous information spreading on social media
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2014.2346922
– start-page: 1017
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b179
  article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space
– start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b53
  article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data
  publication-title: Wirel Netw
– volume: 77
  start-page: 34
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b96
  article-title: Scalable prediction-based online anomaly detection for smart meter data
  publication-title: Inf Syst
  doi: 10.1016/j.is.2018.05.007
– volume: 112
  start-page: 381
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b21
  article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2020.07.003
– volume: 64
  start-page: 99
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b10
  article-title: Data fusion strategies for energy efficiency in buildings: overview, challenges and novel orientations
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2020.07.003
– start-page: 5107
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b38
  article-title: An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery
– start-page: 16
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b18
  article-title: Monitor: An abnormality detection approach in buildings energy consumption
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b15
  article-title: Improving in-home appliance identification using fuzzy-neighbors-preserving analysis based QR-decomposition
– start-page: 600
  year: 2001
  ident: 10.1016/j.apenergy.2021.116601_b51
  article-title: A pca classifier and its application in vehicle detection
– volume: 55
  start-page: 278
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b160
  article-title: A survey of anomaly detection techniques in financial domain
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2015.01.001
– volume: 33
  start-page: 400
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b98
  article-title: Real-time detection of anomalous power consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.01.088
– start-page: 1
  issn: 2158-1525
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b77
  article-title: A method for anomaly prediction in power consumption using long short-term memory and negative selection
– year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b163
– start-page: 1993
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b90
  article-title: Anomaly detection in aviation data using extreme learning machines
– volume: 3
  start-page: 66
  issue: 1–4
  year: 2017
  ident: 10.1016/j.apenergy.2021.116601_b178
  article-title: An unsupervised anomaly detection approach using energy-based spatiotemporal graphical modeling
  publication-title: Cyber-Phys Syst
  doi: 10.1080/23335777.2017.1386717
– volume: 158
  start-page: 1533
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b119
  article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.11.039
– start-page: 2737
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b142
  article-title: Canonical correlation based feature extraction with application to anomaly detection in electric appliances
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b258
  article-title: Smart fusion of sensor data and human feedback for personalised energy-saving recommendations
  publication-title: Int J Intell Syst
– start-page: 407
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b193
  article-title: F-DETA: A framework for detecting electricity theft attacks in smart grids
– volume: 31
  start-page: 955
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b120
  article-title: An in-depth experimental study of anomaly detection using gradient boosted machine
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3128-z
– start-page: 394
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b186
  article-title: A model for predicting room occupancy based on motion sensor data
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2021.116601_b46
  article-title: Isolation-based anomaly detection
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/2133360.2133363
– start-page: 1
  year: 2021
  ident: 10.1016/j.apenergy.2021.116601_b64
  article-title: Detection of appliance-level abnormal energy consumption in buildings using autoencoders and micro-moments
– start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b95
  article-title: An anomaly detection model for enhancing energy management in smart buildings
– volume: 24
  start-page: 1641
  issue: 9
  year: 2003
  ident: 10.1016/j.apenergy.2021.116601_b155
  article-title: Discovering cluster-based local outliers
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(03)00003-5
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b217
– start-page: 291
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b123
  article-title: Intrusion detection system using bagging ensemble method of machine learning
– start-page: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b4
  article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalised recommendations for energy efficiency
  publication-title: Int J Intell Syst
– volume: 15
  start-page: 55
  issue: 1
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b158
  article-title: Application of density-based outlier detection to database activity monitoring
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-010-9266-9
– volume: 9
  start-page: 1089
  issn: 2150-8097
  issue: 12
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b134
  article-title: Distance-based outlier detection in data streams
  publication-title: Proc VLDB Endow
  doi: 10.14778/2994509.2994526
– start-page: 1513
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b34
  article-title: Anomaly detection in time series data using a fuzzy c-means clustering
– volume: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b68
  article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2296
– start-page: 1
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b94
  article-title: Anomaly detection in premise energy consumption data
– volume: 24
  start-page: 23
  issue: 1
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b171
  article-title: Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data
  publication-title: IEEE Trans Vis Comput Graphics
  doi: 10.1109/TVCG.2017.2744419
– start-page: 33
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b184
  article-title: Rimor: Towards identifying anomalous appliances in buildings
– year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b91
– start-page: 2407
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b113
  article-title: Anomaly detection method of smart meters data based on GMM-lda clustering feature learning and PSO support vector machine
– start-page: 1
  year: 2013
  ident: 10.1016/j.apenergy.2021.116601_b188
  article-title: Occupancy detection from electricity consumption data
– start-page: 35
  year: 2015
  ident: 10.1016/j.apenergy.2021.116601_b31
  article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information
  doi: 10.1145/2821650.2821662
– start-page: 1
  year: 2008
  ident: 10.1016/j.apenergy.2021.116601_b115
  article-title: Anomaly detection by combining decision trees and parametric densities
– volume: 208
  start-page: 109675
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b247
  article-title: Study on deep reinforcement learning techniques for building energy consumption forecasting
  publication-title: Energy Buil
  doi: 10.1016/j.enbuild.2019.109675
– year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b41
– start-page: 264
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b194
  article-title: A sensors-based monitoring system of electrical consumptions and home parameters remotely managed by mobile app for elderly habits’ control
– start-page: 135
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b35
  article-title: Detection of electricity theft in customer consumption using outlier detection algorithms
– volume: 34
  start-page: 64
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b86
  article-title: Anomaly detection in power generation plants using machine learning and neural networks
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2019.1691839
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b228
– volume: 31
  start-page: 883
  issue: 2
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b210
  article-title: Privacy-preserving energy theft detection in microgrids: A state estimation approach
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2406311
– start-page: 17
  year: 2011
  ident: 10.1016/j.apenergy.2021.116601_b117
  article-title: Approach based ensemble methods for better and faster intrusion detection
– volume: 109
  start-page: 1
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b148
  article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2019.01.039
– volume: 68
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b12
  article-title: Coronavirus comes home? energy use, home energy management, and the social-psychological factors of covid-19
  publication-title: Energy Res Soc Sci
– volume: 121
  year: 2016
  ident: 10.1016/j.apenergy.2021.116601_b49
  article-title: Cloud computing for energy management in smart grid - an application survey
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/121/1/012010
– start-page: 136
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b82
  article-title: Energy consumption data based machine anomaly detection
– volume: 5
  start-page: 4567
  issue: 6
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b205
  article-title: City scanner: Building and scheduling a mobile sensing platform for smart city services
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2839058
– volume: vol. 80
  start-page: 4393
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b39
  article-title: Deep one-class classification
– start-page: 867
  year: 2018
  ident: 10.1016/j.apenergy.2021.116601_b141
  article-title: Anomaly detection for power consumption patterns in electricity early warning system
– start-page: 1
  year: 2014
  ident: 10.1016/j.apenergy.2021.116601_b185
  article-title: Monitoring and fault detection of electrical appliances for ambient intelligence
– start-page: 1
  year: 2008
  ident: 10.1016/j.apenergy.2021.116601_b112
  article-title: Detection of abnormalities and electricity theft using genetic support vector machines
– volume: 20
  start-page: 1
  issn: 1424-8220
  issue: 1
  year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b201
  article-title: Anomaly detection based latency-aware energy consumption optimization for IoT data-flow services
  publication-title: Sensors
– year: 2020
  ident: 10.1016/j.apenergy.2021.116601_b221
– start-page: 1125
  year: 2019
  ident: 10.1016/j.apenergy.2021.116601_b250
  article-title: Visual anomaly detection in event sequence data
SSID ssj0002120
Score 2.7200432
SecondaryResourceType review_article
Snippet Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116601
SubjectTerms Anomaly detection
artificial intelligence
data collection
decision making
Deep abnormality detection
Energy consumption in buildings
energy efficiency
Energy saving
energy use and consumption
Machine learning
surveys
taxonomy
Title Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives
URI https://dx.doi.org/10.1016/j.apenergy.2021.116601
https://www.proquest.com/docview/2574345011
Volume 287
WOSCitedRecordID wos000621229600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOCAYT40tGQlxKRps4TcItTC1fVeHQoXKyXmxHY2rT0LTTduQP4H_mObabCA1tHLhEVRQ7ad4vfr_3_D4IeeHLWDAG4A2kTskJ5cCDvAeIZV8xKTMV137Ir-NoMolns-RLp_PL5cKczaOiiM_Pk_K_ihrPobB16uw_iHs7KZ7A3yh0PKLY8XgtwaerOvynbsbRrrep9ZWuy7pcwPyiK9VaCccWlUkAFHU6ZunCHzPbMbsy2esrW3f2qCtsTae1iafVrnck57oCssvbrNqc1xFdc5fG171Qmxou35C_t3b3351AoWqUfjpBI6HxGKTzCrXZog4_SDOJtnPjy36L1jiASfUewYWwL8m6M_x-KwrGpnH1Bp4269pLNJp13RJX9wGaj96lC7_xQZweQmn-zKGe245oVJ3b3p985qPj8ZhPh7Ppy_KHp5uQ6c1625HlBtn1ozDBRXI3_TCcfdyqdt_W-XTP2Eo5v_zWf2M7f-j9msxM75I71gqhqUHPPdJRxR653apNuUf2h00KJF5qdUB1n_xsAEbbAKM1wKgFGN0CjC5zah6ZtgCGQ-kWYG9oSg28XlELLmrAhdNJiuCibXA9IMej4fTovWcbeXiChcnaY6ofixgSgIEMor4P0Nc8SDAJMoqzOJBBKEDGKu-hfQ3IKkEBE1Eoc5GHEoJ9slMsC_WQ0D7guTgQEetJhroZwjBnKkCaH-SZzNgBCd0L58JWudfNVubchTOecicorgXFjaAOyOvtuNLUeblyROLkyS1bNSyUIyavHPvcAYDjcq736PDTWm4qjhqUBSxErfvoGtc8Jreab-gJ2VmvNuopuSnO1t-r1TOL3t9JT8t_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+anomaly+detection+of+energy+consumption+in+buildings%3A+A+review%2C+current+trends+and+new+perspectives&rft.jtitle=Applied+energy&rft.au=Himeur%2C+Yassine&rft.au=Ghanem%2C+Khalida&rft.au=Alsalemi%2C+Abdullah&rft.au=Bensaali%2C+Faycal&rft.date=2021-04-01&rft.issn=0306-2619&rft.volume=287+p.116601-&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116601&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon