Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives
Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anoma...
Uloženo v:
| Vydáno v: | Applied energy Ročník 287; s. 116601 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2021
|
| Témata: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.
•Anomaly detection of energy consumption in buildings.•Taxonomy of artificial intelligence based anomaly detection methods.•Current trends and new perspectives of anomaly detection.•Non-intrusive anomaly detection.•Multimodal anomaly detection visualization techniques. |
|---|---|
| AbstractList | Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.
•Anomaly detection of energy consumption in buildings.•Taxonomy of artificial intelligence based anomaly detection methods.•Current trends and new perspectives of anomaly detection.•Non-intrusive anomaly detection.•Multimodal anomaly detection visualization techniques. Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors’ knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence. |
| ArticleNumber | 116601 |
| Author | Ghanem, Khalida Amira, Abbes Himeur, Yassine Alsalemi, Abdullah Bensaali, Faycal |
| Author_xml | – sequence: 1 givenname: Yassine orcidid: 0000-0001-8904-5587 surname: Himeur fullname: Himeur, Yassine email: yassine.himeur@qu.edu.qa organization: Department of Electrical Engineering, Qatar University, Doha, Qatar – sequence: 2 givenname: Khalida surname: Ghanem fullname: Ghanem, Khalida email: kghanem@cdta.dz organization: Division Telecom, Center for Development of Advanced Technologies (CDTA), Algiers, Algeria – sequence: 3 givenname: Abdullah surname: Alsalemi fullname: Alsalemi, Abdullah email: a.alsalemi@qu.edu.qa organization: Department of Electrical Engineering, Qatar University, Doha, Qatar – sequence: 4 givenname: Faycal surname: Bensaali fullname: Bensaali, Faycal email: f.bensaali@qu.edu.qa organization: Department of Electrical Engineering, Qatar University, Doha, Qatar – sequence: 5 givenname: Abbes surname: Amira fullname: Amira, Abbes email: abbes.amira@dmu.ac.uk organization: Institute of Artificial Intelligence, De Montfort University, Leicester, United Kingdom |
| BookMark | eNqFkUFr3DAQhUVJoJu0f6Ho2EO8kWRbtksOWZY2CQR6Sc9iVhovWrySK8kJe8w_r1y3l1xymYHhvTfMNxfkzHmHhHzhbM0Zl9eHNYzoMOxPa8EEX3MuJeMfyIq3jSg6ztszsmIlk4WQvPtILmI8MJaVgq3I6yYk21ttYaDWJRwGu0enke4goqHg_BGGEzWYUCfrHfU9XZZR7V2cjuPfqXV0N9nBWLeP3-iGBny2-HJF9RQCukRTribmOEMdvtARQxznwGeMn8h5D0PEz__6Jfn14_vT9r54_Hn3sN08Frqqu1RUyFvdQgcgTdlwAcBZJTpdGTBNu2tLU9YaTIs9k0KCEBUgVLqpTa_72kB5Sb4uuWPwvyeMSR1t1PlgcOinqETdVGVVM86z9GaR6uBjDNgrbRPMh6YAdlCcqZm8Oqj_5NVMXi3ks12-sY_BHiGc3jfeLkbMHDLAoKK28zeMDZmWMt6-F_EHsu-n_w |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e21525 crossref_primary_10_1016_j_ememar_2025_101314 crossref_primary_10_1016_j_heliyon_2024_e25848 crossref_primary_10_1016_j_eswa_2025_126726 crossref_primary_10_1016_j_scs_2022_104059 crossref_primary_10_1109_ACCESS_2023_3330135 crossref_primary_10_3390_app12136395 crossref_primary_10_1016_j_jobe_2025_112156 crossref_primary_10_1109_TIA_2024_3425805 crossref_primary_10_1016_j_enbuild_2023_113877 crossref_primary_10_3390_a17080322 crossref_primary_10_1016_j_egyr_2021_12_066 crossref_primary_10_1088_1742_6596_2042_1_012015 crossref_primary_10_3390_app13095732 crossref_primary_10_3390_app15147682 crossref_primary_10_2478_rtuect_2025_0036 crossref_primary_10_1016_j_frl_2023_104958 crossref_primary_10_1142_S0129156425402979 crossref_primary_10_1016_j_eswa_2025_128461 crossref_primary_10_1016_j_enbuild_2022_112142 crossref_primary_10_3390_en14010237 crossref_primary_10_3390_en15010341 crossref_primary_10_1109_TQE_2024_3481280 crossref_primary_10_3390_app15158208 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_3390_app13158701 crossref_primary_10_1186_s13677_023_00529_0 crossref_primary_10_1016_j_engappai_2023_107350 crossref_primary_10_1016_j_apenergy_2024_123228 crossref_primary_10_1016_j_engappai_2023_107351 crossref_primary_10_1016_j_jobe_2025_112295 crossref_primary_10_1016_j_indmarman_2023_12_019 crossref_primary_10_1007_s10207_023_00720_z crossref_primary_10_1007_s00500_021_06151_z crossref_primary_10_1080_17483107_2025_2488391 crossref_primary_10_32604_cmes_2023_027032 crossref_primary_10_1016_j_engappai_2022_105775 crossref_primary_10_1007_s10462_024_10827_x crossref_primary_10_1007_s13198_021_01387_2 crossref_primary_10_1007_s10489_023_05205_z crossref_primary_10_1016_j_energy_2022_125042 crossref_primary_10_1016_j_procir_2021_11_031 crossref_primary_10_1145_3652891 crossref_primary_10_1177_0958305X251349481 crossref_primary_10_1109_TII_2022_3141408 crossref_primary_10_1007_s12273_021_0872_x crossref_primary_10_1016_j_enbuild_2023_113738 crossref_primary_10_1016_j_energy_2025_137508 crossref_primary_10_1016_j_eswa_2023_120605 crossref_primary_10_1007_s41403_022_00362_y crossref_primary_10_1016_j_enbuild_2025_116129 crossref_primary_10_3390_s24237440 crossref_primary_10_1016_j_apenergy_2023_121597 crossref_primary_10_1002_eng2_12584 crossref_primary_10_1016_j_ifacol_2024_07_255 crossref_primary_10_1016_j_rser_2025_116130 crossref_primary_10_1109_TCE_2023_3328147 crossref_primary_10_1002_int_22404 crossref_primary_10_1016_j_energy_2023_126608 crossref_primary_10_1109_ACCESS_2025_3529295 crossref_primary_10_1016_j_jobe_2023_106923 crossref_primary_10_1016_j_egyr_2023_06_025 crossref_primary_10_1007_s00202_025_03170_z crossref_primary_10_1016_j_asr_2024_10_001 crossref_primary_10_1016_j_enbuild_2023_112997 crossref_primary_10_1016_j_gr_2024_09_003 crossref_primary_10_3233_THC_232054 crossref_primary_10_1016_j_enbuild_2024_114559 crossref_primary_10_3390_s23229272 crossref_primary_10_1016_j_aei_2024_102868 crossref_primary_10_1016_j_enbuild_2024_113903 crossref_primary_10_1016_j_engappai_2023_107568 crossref_primary_10_71112_nchv3d08 crossref_primary_10_3390_en14227465 crossref_primary_10_1109_TCE_2024_3354189 crossref_primary_10_3390_bs14090755 crossref_primary_10_3390_a18030174 crossref_primary_10_1016_j_apenergy_2023_121244 crossref_primary_10_3390_su13158321 crossref_primary_10_1007_s11760_025_03879_1 crossref_primary_10_1002_cpe_6707 crossref_primary_10_1007_s11036_024_02396_8 crossref_primary_10_1016_j_compchemeng_2021_107619 crossref_primary_10_1051_e3sconf_202128801067 crossref_primary_10_1016_j_egyr_2025_05_074 crossref_primary_10_3390_en14010165 crossref_primary_10_3390_s22176639 crossref_primary_10_1016_j_enbuild_2023_113436 crossref_primary_10_1016_j_enbuild_2024_114803 crossref_primary_10_1016_j_segan_2022_100823 crossref_primary_10_3390_app13031666 crossref_primary_10_1080_17508975_2021_1922336 crossref_primary_10_1016_j_seta_2022_102365 crossref_primary_10_3390_app13106353 crossref_primary_10_1007_s41060_021_00265_1 crossref_primary_10_3390_en15176392 crossref_primary_10_1038_s41598_024_70729_4 crossref_primary_10_1016_j_inffus_2022_06_003 crossref_primary_10_3390_en15217981 crossref_primary_10_1016_j_apenergy_2024_124888 crossref_primary_10_1016_j_apenergy_2025_125458 crossref_primary_10_1016_j_segan_2023_101194 crossref_primary_10_1016_j_conbuildmat_2024_137330 crossref_primary_10_3390_en18102465 crossref_primary_10_1016_j_heliyon_2024_e34800 crossref_primary_10_1016_j_iot_2023_100697 crossref_primary_10_1016_j_nxsust_2024_100041 crossref_primary_10_1016_j_asoc_2021_107751 crossref_primary_10_1016_j_jobe_2023_106867 crossref_primary_10_1016_j_jobe_2024_109998 crossref_primary_10_1016_j_segan_2022_100938 crossref_primary_10_1145_3722213 crossref_primary_10_1016_j_procs_2025_03_115 crossref_primary_10_1016_j_enbuild_2022_112356 crossref_primary_10_1016_j_enbuild_2024_113964 crossref_primary_10_1016_j_enbuild_2024_114811 crossref_primary_10_1016_j_rineng_2024_102818 crossref_primary_10_1177_01436244241239290 crossref_primary_10_3390_en14248325 crossref_primary_10_3390_app13010314 crossref_primary_10_1016_j_ins_2024_121020 crossref_primary_10_3390_app11167716 crossref_primary_10_3390_e23081093 crossref_primary_10_1016_j_eswa_2022_117649 crossref_primary_10_1016_j_jclepro_2022_133714 crossref_primary_10_3390_en15249438 crossref_primary_10_1002_int_22876 crossref_primary_10_1007_s10994_023_06501_y crossref_primary_10_1016_j_knosys_2023_110851 crossref_primary_10_1016_j_apenergy_2023_121705 crossref_primary_10_1016_j_egyr_2023_12_045 crossref_primary_10_1016_j_iot_2023_100908 crossref_primary_10_1177_01445987231221877 crossref_primary_10_1016_j_apenergy_2022_120339 crossref_primary_10_1007_s40684_023_00537_0 crossref_primary_10_1177_01423312211058560 crossref_primary_10_1016_j_cosrev_2024_100665 crossref_primary_10_1016_j_segan_2022_100805 crossref_primary_10_1016_j_enbuild_2023_113419 crossref_primary_10_1080_15487733_2025_2521181 crossref_primary_10_1016_j_rineng_2024_102170 crossref_primary_10_1016_j_solener_2023_05_006 crossref_primary_10_1016_j_techfore_2024_123523 crossref_primary_10_1016_j_enbuild_2021_111670 crossref_primary_10_1111_exsy_13767 crossref_primary_10_3390_w13050582 crossref_primary_10_1016_j_apenergy_2022_119911 crossref_primary_10_1016_j_eswa_2025_128978 crossref_primary_10_1155_2023_8676366 crossref_primary_10_1177_0958305X241258795 crossref_primary_10_1109_ACCESS_2025_3525726 crossref_primary_10_1016_j_enbuild_2023_113524 crossref_primary_10_1016_j_energy_2024_131314 crossref_primary_10_1007_s40313_022_00956_5 crossref_primary_10_1016_j_enbuild_2023_113760 crossref_primary_10_1016_j_apenergy_2023_122138 crossref_primary_10_1016_j_iot_2024_101175 crossref_primary_10_1016_j_nexus_2022_100167 crossref_primary_10_1016_j_renene_2024_120508 crossref_primary_10_3390_s22051925 crossref_primary_10_1016_j_jclepro_2021_127904 crossref_primary_10_1016_j_apenergy_2021_118314 crossref_primary_10_1016_j_enbuild_2022_112302 crossref_primary_10_1108_MD_04_2023_0618 crossref_primary_10_1016_j_eneco_2025_108785 crossref_primary_10_1016_j_energy_2022_123481 crossref_primary_10_1016_j_dib_2024_110769 crossref_primary_10_1007_s11356_023_29051_1 crossref_primary_10_32604_ee_2023_025218 crossref_primary_10_1016_j_icte_2023_06_002 crossref_primary_10_1016_j_rser_2025_116073 crossref_primary_10_3390_en15051837 crossref_primary_10_3390_s21248320 crossref_primary_10_3390_app132112029 crossref_primary_10_1016_j_iot_2025_101505 crossref_primary_10_1016_j_engappai_2023_107063 crossref_primary_10_3390_app15063361 crossref_primary_10_1109_JIOT_2023_3331351 crossref_primary_10_1007_s10489_025_06663_3 crossref_primary_10_1016_j_iref_2025_104490 crossref_primary_10_3390_ma16186105 crossref_primary_10_1051_e3sconf_202346900095 crossref_primary_10_3390_polym14061143 crossref_primary_10_3390_s23010001 crossref_primary_10_1016_j_ejps_2025_107239 crossref_primary_10_1109_JSEN_2024_3399193 crossref_primary_10_4018_IJAEIS_388736 crossref_primary_10_1109_TIM_2025_3550237 crossref_primary_10_1016_j_heliyon_2024_e27973 crossref_primary_10_1016_j_asoc_2023_110054 crossref_primary_10_1016_j_eneco_2024_107976 crossref_primary_10_3389_fbuil_2023_1334005 crossref_primary_10_3390_buildings14103136 crossref_primary_10_1016_j_enbuild_2023_113583 crossref_primary_10_3389_fenrg_2024_1346398 crossref_primary_10_3390_su16093627 crossref_primary_10_1109_ACCESS_2024_3400588 crossref_primary_10_1016_j_asoc_2024_111636 crossref_primary_10_1007_s10462_025_11108_x crossref_primary_10_1080_13682199_2023_2202577 crossref_primary_10_1016_j_apenergy_2021_117694 crossref_primary_10_1080_00038628_2024_2350491 crossref_primary_10_3390_electronics11203315 crossref_primary_10_1016_j_jobe_2025_112418 crossref_primary_10_1155_2022_7823481 crossref_primary_10_1016_j_engappai_2022_105254 crossref_primary_10_1016_j_esr_2024_101600 crossref_primary_10_1016_j_buildenv_2023_110407 crossref_primary_10_1016_j_mseb_2023_117000 crossref_primary_10_1109_ACCESS_2024_3449642 crossref_primary_10_1016_j_rser_2022_112401 crossref_primary_10_1016_j_eneco_2024_108159 crossref_primary_10_1109_ACCESS_2024_3402997 crossref_primary_10_1016_j_eswa_2023_120565 crossref_primary_10_1016_j_inffus_2024_102601 crossref_primary_10_3390_en17174529 crossref_primary_10_1002_cpe_6316 crossref_primary_10_1016_j_esd_2025_101761 crossref_primary_10_1109_JSEN_2024_3426090 crossref_primary_10_1016_j_cmpb_2022_106706 crossref_primary_10_1049_wss2_12054 crossref_primary_10_1109_TPWRS_2022_3162391 crossref_primary_10_3233_AIC_230064 crossref_primary_10_1007_s12273_025_1242_x crossref_primary_10_1016_j_rser_2023_113343 crossref_primary_10_3389_fenrg_2022_1043593 crossref_primary_10_1371_journal_pone_0286770 crossref_primary_10_1177_00368504241272722 crossref_primary_10_3389_fevo_2023_1267259 crossref_primary_10_1109_TSG_2023_3250521 crossref_primary_10_1080_17512549_2025_2513282 crossref_primary_10_3390_su15097458 crossref_primary_10_1016_j_egyr_2023_09_175 crossref_primary_10_3390_electronics11050693 crossref_primary_10_1016_j_apenergy_2022_119153 crossref_primary_10_1109_ACCESS_2024_3520490 crossref_primary_10_1007_s13369_023_08038_7 crossref_primary_10_1007_s11633_025_1554_4 crossref_primary_10_1016_j_asoc_2022_108838 crossref_primary_10_1016_j_energy_2023_129142 crossref_primary_10_1016_j_csa_2025_100105 crossref_primary_10_1016_j_enbuild_2021_111255 crossref_primary_10_1145_3724128 crossref_primary_10_3390_en16248057 crossref_primary_10_1016_j_jastp_2022_105979 crossref_primary_10_1109_ACCESS_2023_3284470 crossref_primary_10_1016_j_jclepro_2025_145533 crossref_primary_10_1016_j_enbuild_2022_112749 crossref_primary_10_1016_j_enbuild_2024_115177 crossref_primary_10_3390_systems11100519 crossref_primary_10_1016_j_iot_2024_101306 crossref_primary_10_3390_ma15010121 crossref_primary_10_1186_s42162_022_00230_7 crossref_primary_10_1007_s12652_022_04376_w crossref_primary_10_1016_j_jclepro_2022_131242 crossref_primary_10_1016_j_jobe_2024_109354 crossref_primary_10_1016_j_eneco_2025_108231 crossref_primary_10_1038_s41598_023_49903_7 crossref_primary_10_3390_electronics13010102 crossref_primary_10_1155_2024_5699802 crossref_primary_10_1016_j_egyr_2025_05_003 crossref_primary_10_3390_admsci13020029 crossref_primary_10_1016_j_enbuild_2024_115069 crossref_primary_10_1007_s10311_024_01799_z crossref_primary_10_3390_make6020045 crossref_primary_10_1109_ACCESS_2024_3402446 crossref_primary_10_3389_frsc_2023_1043657 crossref_primary_10_1049_gtd2_12997 crossref_primary_10_1016_j_iot_2024_101434 crossref_primary_10_1080_10447318_2024_2398324 crossref_primary_10_1007_s12053_025_10308_2 crossref_primary_10_1016_j_engfailanal_2024_108157 crossref_primary_10_1016_j_jobe_2025_111924 crossref_primary_10_4218_etrij_2023_0155 crossref_primary_10_1016_j_scs_2023_104870 crossref_primary_10_3390_buildings13020532 crossref_primary_10_1007_s11082_023_05781_x crossref_primary_10_3390_machines11121082 crossref_primary_10_1016_j_jocs_2025_102685 crossref_primary_10_1016_j_asoc_2024_111275 crossref_primary_10_1002_pc_27194 crossref_primary_10_1016_j_jobe_2022_104505 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_1007_s11831_023_10054_7 crossref_primary_10_1108_SASBE_07_2023_0170 crossref_primary_10_1016_j_apenergy_2022_119864 crossref_primary_10_1016_j_apenergy_2023_121317 crossref_primary_10_1016_j_apenergy_2021_118136 crossref_primary_10_1007_s13369_022_07030_x crossref_primary_10_1016_j_autcon_2024_105890 crossref_primary_10_1016_j_enbuild_2021_111823 crossref_primary_10_3390_s22176321 crossref_primary_10_1111_exsy_12959 crossref_primary_10_1016_j_jclepro_2024_143049 crossref_primary_10_1016_j_renene_2024_120350 crossref_primary_10_1016_j_iot_2023_101035 crossref_primary_10_1007_s10462_023_10441_3 crossref_primary_10_1109_ACCESS_2023_3347989 crossref_primary_10_1049_gtd2_12619 crossref_primary_10_1155_2024_5595459 crossref_primary_10_3390_electronics13081501 crossref_primary_10_3390_app112110376 crossref_primary_10_3390_su17188340 crossref_primary_10_1016_j_iot_2022_100568 crossref_primary_10_1016_j_enbuild_2022_112096 crossref_primary_10_1145_3649448 |
| Cites_doi | 10.3390/electronics9071164 10.1016/j.apenergy.2020.114877 10.5220/0007361704830490 10.1038/s42256-020-0186-1 10.1016/j.cag.2013.10.006 10.1016/j.apenergy.2019.01.061 10.1155/2017/8501683 10.1109/ACCESS.2018.2886583 10.1109/ACCESS.2019.2915641 10.1016/j.jclepro.2017.02.028 10.1155/2019/2686378 10.1109/ACCESS.2020.2966640 10.1016/j.apenergy.2020.115835 10.1016/j.inffus.2016.04.007 10.1016/j.egyr.2017.11.002 10.3390/jimaging4020036 10.1038/s41598-020-68662-3 10.1016/j.enbuild.2020.110404 10.3390/e17042367 10.3390/info8040151 10.1007/s12559-020-09764-y 10.1016/j.energy.2018.05.127 10.1155/2017/8782131 10.1007/s10618-014-0365-y 10.1109/ACCESS.2019.2943667 10.1016/j.patcog.2013.05.022 10.1108/17468801111119498 10.1109/ACCESS.2017.2771365 10.1186/s40537-018-0133-8 10.1016/j.adhoc.2020.102177 10.1016/j.aei.2013.03.002 10.3390/app9194193 10.1109/ACCESS.2019.2925322 10.1109/COMST.2019.2916583 10.1155/2019/4136874 10.1109/TII.2017.2776251 10.1016/j.scs.2020.102283 10.1109/TII.2017.2785963 10.1016/j.eswa.2016.03.002 10.1016/j.apenergy.2017.12.005 10.1016/j.scs.2019.101983 10.1109/JIOT.2019.2903312 10.3390/s19245370 10.1016/j.procs.2017.09.040 10.1016/j.ijforecast.2015.06.001 10.1038/s41591-020-1011-4 10.1016/j.future.2015.01.001 10.1109/TMM.2018.2871421 10.1007/s00779-017-1095-0 10.1109/LSP.2018.2889273 10.1016/j.ifacol.2018.08.439 10.1007/s10115-008-0145-3 10.1016/j.enbuild.2017.02.058 10.1016/j.buildenv.2020.107212 10.1016/j.jnca.2020.102659 10.1016/j.rser.2018.10.014 10.1145/335191.335388 10.1016/j.apenergy.2019.114145 10.1016/j.apenergy.2020.115739 10.1109/ACCESS.2018.2805908 10.1016/j.enbuild.2020.109807 10.1145/1081870.1081891 10.1109/JIOT.2019.2914937 10.1177/1550147717722499 10.1109/JSYST.2019.2899832 10.3390/s19112451 10.1016/j.jclepro.2020.121082 10.1016/j.scs.2020.102420 10.1109/TNSM.2016.2597125 10.1561/1500000066 10.1016/j.ijepes.2018.03.025 10.1016/j.knosys.2014.02.008 10.1049/iet-stg.2019.0081 10.3390/app10114011 10.1016/j.future.2020.05.041 10.1109/ACCESS.2019.2891315 10.3390/en13010130 10.1016/j.apenergy.2020.115872 10.1016/j.ijrefrig.2020.02.035 10.1109/TVCG.2014.2346922 10.1016/j.is.2018.05.007 10.1016/j.envsci.2020.07.003 10.1016/j.inffus.2020.07.003 10.1016/j.rser.2014.01.088 10.1080/23335777.2017.1386717 10.1016/j.enbuild.2017.11.039 10.1007/s00521-017-3128-z 10.1145/2133360.2133363 10.1016/S0167-8655(03)00003-5 10.1007/s10796-010-9266-9 10.14778/2994509.2994526 10.1002/stc.2296 10.1109/TVCG.2017.2744419 10.1145/2821650.2821662 10.1016/j.enbuild.2019.109675 10.1080/08839514.2019.1691839 10.1109/TPWRS.2015.2406311 10.1016/j.ijepes.2019.01.039 10.1088/1757-899X/121/1/012010 10.1109/JIOT.2018.2839058 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors |
| Copyright_xml | – notice: 2021 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2021.116601 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| ExternalDocumentID | 10_1016_j_apenergy_2021_116601 S0306261921001409 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c459t-4e18c8a9aa6d3712aa10429c4dad78b83d35cad8ef0626a224aea4c75dfcf5da3 |
| ISICitedReferencesCount | 373 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621229600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 02:47:41 EDT 2025 Sat Nov 29 07:19:30 EST 2025 Tue Nov 18 22:29:47 EST 2025 Fri Feb 23 02:44:11 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy saving Energy consumption in buildings Anomaly detection Machine learning Deep abnormality detection |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c459t-4e18c8a9aa6d3712aa10429c4dad78b83d35cad8ef0626a224aea4c75dfcf5da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8904-5587 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.apenergy.2021.116601 |
| PQID | 2574345011 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2574345011 crossref_citationtrail_10_1016_j_apenergy_2021_116601 crossref_primary_10_1016_j_apenergy_2021_116601 elsevier_sciencedirect_doi_10_1016_j_apenergy_2021_116601 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied energy |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fekri, Ghosh, Grolinger (b75) 2020; 13 Hock, Kappes, Ghita (b106) 2020; 21 Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid data. In: Proceedings of the thirtieth international florida artificial intelligence research society conference. 2017, p. 306–11. Himeur, Alsalemi, Bensaali, Amira (b16) 2020; 267 Ouyang, Sun, Yue (b144) 2017 Zheng, Yang, Niu, Dai, Zhou (b67) 2018; 14 Kim, Lee, Choi, Spurlock, Sim, Todd (b122) 2015 Hou, Xiao (b159) 2017; 5 Liznerski, Ruff, Vandermeulen, Franks, Kloft, Müller (b238) 2020 Qiu, Tu, Zhang (b141) 2018 fei Chen, Zarazua de Rubens, Xu, Li (b12) 2020; 68 Budd, Miller, Manning, Lampos, Zhuang, Edelstein, Rees, Emery, Stevens, Keegan, Short, Pillay, Manley, Cox, Heymann, Johnson, McKendry (b260) 2020; 26 Ariyaluran Habeeb, Nasaruddin, Gani, Amanullah, Abaker Targio Hashem (b25) 2019 Rossi, Chren, Buhnova, Pitner (b32) 2016 Kromanis, Kripakaran (b93) 2013; 27 Vanem, Brandster (b26) 2019 Zyabkina, Domagk, Meyer, Schegner (b145) 2018 Xu, Chen (b81) 2020; 114 Yang, Japkowicz (b180) 2018; 5 Huang, Lei (b74) 2020; 105 Naveen, Ing, Danquah, Sidhu, Abu-Siada (b49) 2016; 121 Ruff, Vandermeulen, Görnitz, Binder, Müller, Müller, Kloft (b166) 2019 Gu, Akoglu, Rinaldo (b131) 2019 Aberkane, Elarbi (b243) 2019 Magazzino, Mele, Schneider (b13) 2020; 279 Lipcak, Macak, Rossi (b147) 2019 Guo, Jin, Chen, Gotz, Zha, Cao (b250) 2019 Liu, Ghosal, Jiang, Sarkar (b178) 2017; 3 Oza, Patel (b42) 2019; 26 Liu, Ting, Zhou (b46) 2012; 6 Farag, Abdelkader, Salem (b165) 2019 Bose, Kar, Roy, Gopalakrishnan, Basu (b91) 2018 Van Efferen, Ali-Eldin (b87) 2017 Himeur, Alsalemi, Al-Kababji, Bensaali, Amira (b10) 2020; 64 Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b130) 2016 (b224) 2020 Al-Kababji, Alsalemi, Himeur, fernandez, Bensaali, Amira, Fetais (b251) 2020 Wang, Ahn (b85) 2020; 259 Touzani, Granderson, Fernandes (b119) 2018; 158 Violatto, Pandharipande, Li, Schenato (b191) 2019; 6 Sardianos, Varlamis, Dimitrakopoulos, Anagnostopoulos, Alsalemi, Bensaali (b3) 2020; 112 Amara korba, El Islem karabadji (b111) 2019 Primartha, Tama (b127) 2017 Batra, Kukunuri, Pandey, Malakar, Kumar, Krystalakos, Zhong, Meira, Parson (b253) 2019 BereziÅski, Jasiul, Szpyrka (b37) 2015; 17 Fenza, Gallo, Loia (b79) 2019; 7 Tang, Chen, Bao, Li (b68) 2019; 26 Saragadam, Wang, Li, Sankaranarayanan (b174) 2017 Akhavan-Hejazi, Mohsenian-Rad (b215) 2018; 4 Capozzoli, Piscitelli, Brandi, Grassi, Chicco (b173) 2018; 157 Hollingsworth, Rouse, Cho, Harris, Sartipi, Sozer (b78) 2018 (b220) 2019 Zhao, Cao, Wen, Song, Lin, Collins (b248) 2014; 20 Gaur, Makonin, Bajić, Majumdar (b22) 2019; 7 Luo, Oyedele, Ajayi, Akinade (b9) 2020; 61 Santolamazza, Cesarotti, Introna (b83) 2018; 51 Xia, Zhao, Zhang (b175) 2011 (b225) 2020 Himeur, Alsalemi, Bensaali, Amira (b209) 2020; 279 Himeur, Alsalemi, Bensaali, Amira (b211) 2020; 227 Ngarambe, Yun, Santamouris (b6) 2020; 211 Zhang, Wu, Lin, Yuan, Song (b43) 2017; 114 Himeur, Elsalemi, Bensaali, Amira (b199) 2021 Nychis, Sekar, Andersen, Kim, Zhang (b36) 2008 Akoglu, Tong, Koutra (b162) 2015; 29 Xu, Liu, Yao (b116) 2019; 2019 Rashid, Singh (b233) 2017 Kumar, Chacko (b24) 2016 Pastore, Zimmerman, Biswas, Bianco (b30) 2020; 10 Ghori, Imran, Nawaz, Abbasi, Ullah, Szathmary (b45) 2020 Elsalemi, Himeur, Bensaali, Amira (b17) 2020 Yeckle, Tang (b35) 2018 Akouemo, Povinelli (b101) 2016; 32 Himeur Y, Elsalemi A, Bensaali F, Amira A. Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications. In: Proc. 25th International Conference on Pattern Recognition (ICPR), 2020. p. 1–8. Alsalemi, Sardianos, Bensaali, Varlamis, Amira, Dimitrakopoulos (b11) 2019; 13 Gregurić, Vujić, Alexopoulos, Miletić (b245) 2020; 10 Nagi, Yap, Tiong, Ahmed, Mohammad (b112) 2008 Wang, Yang, Ahn (b168) 2019; 7 Roberts, Bassett, Lochner (b100) 2021 Nabil, Ismail, Mahmoud, Alasmary, Serpedin (b197) 2019; 7 Tian, Khoa, Anaissi, Wang, Chen (b213) 2019 Kudo, Morita, Matsuda, Takine (b52) 2013 He, Xu, Deng (b155) 2003; 24 Sun, Yu, Chen, Kadam (b72) 2019 Jakkula, Cook (b104) 2010 Patrono, Primiceri, Rametta, Sergi, Visconti (b195) 2017 Al-Kababji, Alsalemi, Himeur, Bensaali, Amira, Fernandez, Fetais (b252) 2020 (b219) 2020 Scarpiniti, Baccarelli, Momenzadeh, Uncini (b202) 2019; 9 Anjomshoaa, Duarte, Rennings, Matarazzo, deSouza, Ratti (b205) 2018; 5 Depuru, Wang, Devabhaktuni (b110) 2011 Lazarevic, Kumar (b129) 2005 Choi, Lim, Choi, Kim (b71) 2020 Chen, Sinn, Ploennigs, Schumann (b109) 2014 Kamaraj, Dezfouli, Liu (b55) 2019 Brlisauer, Goette, Jiang, Schmitz, Schubert (b14) 2020; 145 (b223) 2020 daSilva, Guarany, Arruda, Gurjão, Freire (b77) 2019 Nguyen, Ang, Gopalkrishnan (b124) 2010 Izakian, Pedrycz (b34) 2013 Liu, Pang, Karlsson, Gong (b203) 2020; 183 Munir, Siddiqui, Chattha, Dengel, Ahmed (b65) 2019; 19 Himeur, Alsalemi, Bensaali, Amira (b19) 2020; 12 Kleiminger, Beckel, Staake, Santini (b188) 2013 Cody, Ford, Siraj (b114) 2015 Alsalemi, Himeur, Bensaali, Amira, Sardianos, Varlamis, Dimitrakopoulos (b242) 2020; 8 Kaissis, Makowski, Rückert, Braren (b255) 2020; 2 Hao, Li, Xu, Liu, Yang (b256) 2019 Fahim, Sillitti (b95) 2018 Chahla C, Snoussi H, Merghem-Boulahia L, Esseghir M. A novel approach for anomaly detection in power consumption data. In: 8th international conference on pattern recognition applications and methods, Prague, Czech Republic; 2019. Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (b125) 2017; 144 Yijia, Hang (b133) 2016 Ouyang, Sun, Chen, Yue, Zhang (b128) 2018; 6 Salinas, Li (b210) 2016; 31 Rahmani, Afra, Zarour, Addam, Koochakzadeh, Kianmehr (b164) 2014; 61 Himeur, Alsalemi, Bensaali, Amira, Varlamis, Bravos, Sardianos, Dimitrakopoulos (b216) 2020 (b218) 2020 Shi, Li, Sun (b38) 2016 Wun, Shi, Luo, Luo (b126) 2019 Liu, Ting, Zhou (b138) 2008 Janetzko, Stoffel, Mittelstädt, Keim (b170) 2014; 38 Yen, Morris, Ezra, Huat (b148) 2019; 109 Pereira, Silveira (b62) 2018 Ahmed, Mahmood, Islam (b28) 2016; 55 Laaroussi, Bahrar, Mankibi, Draoui, Si-Larbi (b187) 2020; 63 Zeng, Zhuang (b89) 2010 Gao, Song, Wen, Wang, Sun, Xu (b140) 2020 (b221) 2020 Huang, Sethu, Kandasamy (b47) 2016; 13 Zhang, Ji (b200) 2020 Chou, Telaga (b98) 2014; 33 Giannoni, Mancini, Marinelli (b156) 2018 Gao, Schay, Hou (b190) 2018 Bontemps, Cao, McDermott, Le-Khac (b76) 2016 Janakiram, Kumar, Reddy V. (b108) 2006 (b217) 2020 Janakiraman, Nielsen (b90) 2016 Visconti, Costantini, de Fazio, Lay-Ekuakille, Patrono (b194) 2019 Tran, Fan, Shahabi (b134) 2016; 9 (b222) 2020 Ghanbari, Kinsner, Ferens (b84) 2016 Sardianos, Varlamis, Chronis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b264) 2020 Weng, Zhang, Xia (b60) 2019; 7 Sayed, Elsalemi, Himeur, Bensaali, Amira (b241) 2021 Himeur, Elsalemi, Bensaali, Amira (b54) 2020 Bacciu, Lisboa, Sperduti, Villmann (b99) 2015 Valko, Kveton, Valizadegan, Cooper, Hauskrecht (b48) 2011 Pham, Ngo, Ha Truong, Huynh, Truong (b8) 2020; 260 Rashid, Stankovic, Stankovic, Singh (b23) 2019 Kammerer, Hoppenstedt, Pryss, Stökler, Allgaier, Reichert (b88) 2019; 19 Liu, Zhang, Lu (b212) 2014 Dilraj, Nimmy, Sankaran (b183) 2019 Shi, Liu, Tong, He, Yan, Cao (b249) 2019 Chen, Cook (b153) 2011; WS-11-07 Krishna, Lee, Weaver, Iyer, Sanders (b193) 2016 Yuan, Jia (b63) 2015 Li, Chen, Jin, Shi, Goh, Ng (b73) 2019 Luo, Li, Qiu (b201) 2020; 20 Huo, Wang, Li (b135) 2019 Zhang, Chen, Black (b94) 2011 Coma-Puig, Carmona, Gavaldà, Alcoverro, Martin (b107) 2016 Izumi, Azuma (b206) 2018; 14 Arjunan, Khadilkar, Ganu, Charbiwala, Singh, Singh (b31) 2015 Mulongo, Atemkeng, Ansah-Narh, Rockefeller, Nguegnang, Garuti (b86) 2020; 34 (b207) 2020 Chen, Fei, Wang, Lu, Jin, Li, Wu (b82) 2014 Gaikwad, Thool (b123) 2015 Lee, Kim (b139) 2019 Sardianos, Varlamis, Dimitrakopoulos, Anagnostopoulo, Alsalemi, Himeur (b4) 2020 Brown (b50) 1998 (b227) 2020 Fan, Zaïane, Foss, Wu (b136) 2009; 19 Kauffmann, Ruff, Montavon, Müller (b236) 2020 Zhang, Wang (b132) 2018 Antwarg, Miller, Shapira, Rokach (b237) 2019 Jakkula, Cook (b40) 2011; WS-11-07 Sial, Singh, Mahanti (b53) 2019 Albiero, Santos, Uyrá, Vilarino, Silva, Souza (b121) 2019 Himeur, Alsalemi, Bensaali, Amira, Sardianos, Varlamis (b1) 2021 Feng, Li, Pan, Zhang, Guo (b29) 2017; 13 Himeur, Elsalemi, Bensaali, Amira (b64) 2021 Varlamis, Sardianos, Dimitrakopoulos, Alsalemi, Himeur, Bensaali (b2) 2020 Wang, Wang, Jiang, Qin, Xue (b176) 2016 Rau, Moran, Manton, Goggins (b5) 2020; 54 Sardianos, Varlamis, Chronis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b186) 2020 Yao, Wen, Liang, Fu, Zhang, Yang (b198) 2019; 6 Patrono, Rametta, Meis (b196) 2018 Mookiah, Dean, Eberle (b146) 2017 Sardianos, Chronis, Varlamis, Dimitrakopoulos, Himeur, Alsalemi, Bensaali, Amira (b258) 2021 Reif, Goldstein, Stahl, Breuel (b115) 2008 Petladwala, Ishii, Sendoda, Kondo (b142) 2019 Luong, Hoang, Gong, Niyato, Wang, Liang, Kim (b246) 2019; 21 Ahmed, Mahmood, Islam (b160) 2016; 55 Kim, Cho, Lee, Kang, Kim, Hwang (b158) 2013; 15 Rashid, Singh, Stankovic, Stankovic (b20) 2019; 238 Nilashi, Asadi, Abumalloh, Samad, Ibrahim (b259) 2020; 7 Chijoriga (b57) 2011; 6 Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder (b39) 2018; vol. 80 Himeur, Alsalemi, Bensaali, Amira (b232) 2020 Batra, Kelly, Parson, Dutta, Knottenbelt, Rogers, Singh, Srivastava (b254) 2014 Chou, Telaga, Chong, Gibson (b172) 2017; 149 Dsir, Bernard, Petitjean, Heutte (b44) 2013; 46 Wang, Lam, Song, Li, Guo (b21) 2020; 112 Liu, Tan, Xu, Chen, Li (b247) 2020; 208 Linda, Wijayasekara, Manic, Rieger (b152) 2012 Kabler, Lutes, Briançon, Crawford, Giacoponello, Johnson, Jara-Olivares, Epard, Goldberg, Lancaster (b185) 2014 Alsalemi, Himeur, Bensaali, Amira, Sardianos, Chronis, Varlamis, Dimitrakopoulos (b261) 2020 Liu, Iftikhar, Nielsen, Heller (b105) 2016 Rashidi, Hashemi, Hamzeh (b102) 2011 Zhang, Chen (b263) 2020; 14 Alrawashdeh, Purdy (b70) 2016 Xie, Jin, Wang, Yang, Lu, Li (b214) 2020; 162 Amarasinghe, Kenney, Manic (b235) 2018 Wang, Nie, Wang, Yang, Long (b59) 2020 Jain, Choksi, Pindoriya (b151) 2019; 2 Fan, Xiao, Zhao, Wang (b167) 2018; 211 Mao, Cao, zhou, Yan, Zhang (b137) 2018 Andrysiak, Saganowski, Kiedrowski (b143) 2017; 2017 Breunig, Kriegel, Ng, Sander (b154) 2000; 29 Liu, Nielsen (b96) 2018; 77 (b229) 2020 Verma, S Xie (10.1016/j.apenergy.2021.116601_b214) 2020; 162 Verma (10.1016/j.apenergy.2021.116601_b27) 2019 Capozzoli (10.1016/j.apenergy.2021.116601_b173) 2018; 157 Linda (10.1016/j.apenergy.2021.116601_b152) 2012 Zhang (10.1016/j.apenergy.2021.116601_b43) 2017; 114 Rashid (10.1016/j.apenergy.2021.116601_b20) 2019; 238 Ahmed (10.1016/j.apenergy.2021.116601_b28) 2016; 55 Fan (10.1016/j.apenergy.2021.116601_b136) 2009; 19 Himeur (10.1016/j.apenergy.2021.116601_b16) 2020; 267 Ruff (10.1016/j.apenergy.2021.116601_b39) 2018; vol. 80 Yang (10.1016/j.apenergy.2021.116601_b180) 2018; 5 Himeur (10.1016/j.apenergy.2021.116601_b1) 2021 Fan (10.1016/j.apenergy.2021.116601_b167) 2018; 211 Himeur (10.1016/j.apenergy.2021.116601_b232) 2020 Gaikwad (10.1016/j.apenergy.2021.116601_b123) 2015 (10.1016/j.apenergy.2021.116601_b207) 2020 (10.1016/j.apenergy.2021.116601_b227) 2020 Kiran (10.1016/j.apenergy.2021.116601_b58) 2018; 4 Hou (10.1016/j.apenergy.2021.116601_b159) 2017; 5 Zhang (10.1016/j.apenergy.2021.116601_b113) 2019 Akouemo (10.1016/j.apenergy.2021.116601_b101) 2016; 32 Himeur (10.1016/j.apenergy.2021.116601_b7) 2020 (10.1016/j.apenergy.2021.116601_b219) 2020 Jain (10.1016/j.apenergy.2021.116601_b151) 2019; 2 Yijia (10.1016/j.apenergy.2021.116601_b133) 2016 Rashid (10.1016/j.apenergy.2021.116601_b23) 2019 (10.1016/j.apenergy.2021.116601_b221) 2020 Gaur (10.1016/j.apenergy.2021.116601_b22) 2019; 7 fei Chen (10.1016/j.apenergy.2021.116601_b12) 2020; 68 Sun (10.1016/j.apenergy.2021.116601_b72) 2019 Sial (10.1016/j.apenergy.2021.116601_b53) 2019 Lazarevic (10.1016/j.apenergy.2021.116601_b129) 2005 Hollingsworth (10.1016/j.apenergy.2021.116601_b78) 2018 Cui (10.1016/j.apenergy.2021.116601_b97) 2017; 8 Ahmed (10.1016/j.apenergy.2021.116601_b160) 2016; 55 Fenza (10.1016/j.apenergy.2021.116601_b79) 2019; 7 Kromanis (10.1016/j.apenergy.2021.116601_b93) 2013; 27 Zheng (10.1016/j.apenergy.2021.116601_b67) 2018; 14 Zhang (10.1016/j.apenergy.2021.116601_b69) 2018 Ghanbari (10.1016/j.apenergy.2021.116601_b84) 2016 Yip (10.1016/j.apenergy.2021.116601_b149) 2018; 101 Fekri (10.1016/j.apenergy.2021.116601_b75) 2020; 13 (10.1016/j.apenergy.2021.116601_b222) 2020 Sardianos (10.1016/j.apenergy.2021.116601_b186) 2020 Elavarasan (10.1016/j.apenergy.2021.116601_b257) 2020 Rossi (10.1016/j.apenergy.2021.116601_b32) 2016 Oza (10.1016/j.apenergy.2021.116601_b42) 2019; 26 Liu (10.1016/j.apenergy.2021.116601_b178) 2017; 3 Wang (10.1016/j.apenergy.2021.116601_b59) 2020 Nabil (10.1016/j.apenergy.2021.116601_b192) 2018 Song (10.1016/j.apenergy.2021.116601_b169) 2017; 2017 Kamaraj (10.1016/j.apenergy.2021.116601_b55) 2019 Nabil (10.1016/j.apenergy.2021.116601_b197) 2019; 7 Alsalemi (10.1016/j.apenergy.2021.116601_b11) 2019; 13 Himeur (10.1016/j.apenergy.2021.116601_b231) 2020 Nagi (10.1016/j.apenergy.2021.116601_b112) 2008 Ngarambe (10.1016/j.apenergy.2021.116601_b6) 2020; 211 Alsalemi (10.1016/j.apenergy.2021.116601_b242) 2020; 8 Vanem (10.1016/j.apenergy.2021.116601_b26) 2019 Xu (10.1016/j.apenergy.2021.116601_b81) 2020; 114 Munawar (10.1016/j.apenergy.2021.116601_b179) 2017 Brown (10.1016/j.apenergy.2021.116601_b50) 1998 Bose (10.1016/j.apenergy.2021.116601_b91) 2018 Cody (10.1016/j.apenergy.2021.116601_b114) 2015 Patrono (10.1016/j.apenergy.2021.116601_b195) 2017 Jakkula (10.1016/j.apenergy.2021.116601_b40) 2011; WS-11-07 Alrawashdeh (10.1016/j.apenergy.2021.116601_b70) 2016 Elsalemi (10.1016/j.apenergy.2021.116601_b17) 2020 Andoni (10.1016/j.apenergy.2021.116601_b230) 2019; 100 Mookiah (10.1016/j.apenergy.2021.116601_b146) 2017 (10.1016/j.apenergy.2021.116601_b182) 2020 Shi (10.1016/j.apenergy.2021.116601_b249) 2019 Luo (10.1016/j.apenergy.2021.116601_b9) 2020; 61 Scarpiniti (10.1016/j.apenergy.2021.116601_b202) 2019; 9 Gao (10.1016/j.apenergy.2021.116601_b140) 2020 Fahim (10.1016/j.apenergy.2021.116601_b95) 2018 Yuan (10.1016/j.apenergy.2021.116601_b63) 2015 Alsalemi (10.1016/j.apenergy.2021.116601_b261) 2020 Bontemps (10.1016/j.apenergy.2021.116601_b76) 2016 Visconti (10.1016/j.apenergy.2021.116601_b194) 2019 Liu (10.1016/j.apenergy.2021.116601_b105) 2016 Hao (10.1016/j.apenergy.2021.116601_b256) 2019 Hock (10.1016/j.apenergy.2021.116601_b106) 2020; 21 Ruff (10.1016/j.apenergy.2021.116601_b166) 2019 Valko (10.1016/j.apenergy.2021.116601_b48) 2011 Rashid (10.1016/j.apenergy.2021.116601_b233) 2017 Chalapathy (10.1016/j.apenergy.2021.116601_b41) 2018 Kabler (10.1016/j.apenergy.2021.116601_b185) 2014 Ouyang (10.1016/j.apenergy.2021.116601_b128) 2018; 6 Bosman (10.1016/j.apenergy.2021.116601_b181) 2017; 33 Liu (10.1016/j.apenergy.2021.116601_b212) 2014 Chen (10.1016/j.apenergy.2021.116601_b82) 2014 BereziÅski (10.1016/j.apenergy.2021.116601_b37) 2015; 17 Kim (10.1016/j.apenergy.2021.116601_b122) 2015 Akbar (10.1016/j.apenergy.2021.116601_b189) 2015 Ariyaluran Habeeb (10.1016/j.apenergy.2021.116601_b25) 2019 Imamverdiyev (10.1016/j.apenergy.2021.116601_b92) 2016 Gao (10.1016/j.apenergy.2021.116601_b190) 2018 10.1016/j.apenergy.2021.116601_b234 Albiero (10.1016/j.apenergy.2021.116601_b121) 2019 Janakiram (10.1016/j.apenergy.2021.116601_b108) 2006 Bahri (10.1016/j.apenergy.2021.116601_b117) 2011 Bacciu (10.1016/j.apenergy.2021.116601_b99) 2015 Zhang (10.1016/j.apenergy.2021.116601_b132) 2018 Himeur (10.1016/j.apenergy.2021.116601_b15) 2020 Rahmani (10.1016/j.apenergy.2021.116601_b164) 2014; 61 Krishna (10.1016/j.apenergy.2021.116601_b193) 2016 Tian (10.1016/j.apenergy.2021.116601_b213) 2019 Roberts (10.1016/j.apenergy.2021.116601_b100) 2021 Pastore (10.1016/j.apenergy.2021.116601_b30) 2020; 10 daSilva (10.1016/j.apenergy.2021.116601_b77) 2019 Levorato (10.1016/j.apenergy.2021.116601_b177) 2012 Himeur (10.1016/j.apenergy.2021.116601_b199) 2021 Liu (10.1016/j.apenergy.2021.116601_b96) 2018; 77 Kim (10.1016/j.apenergy.2021.116601_b158) 2013; 15 Lee (10.1016/j.apenergy.2021.116601_b139) 2019 Saragadam (10.1016/j.apenergy.2021.116601_b174) 2017 Henriques (10.1016/j.apenergy.2021.116601_b33) 2020; 9 Nguyen (10.1016/j.apenergy.2021.116601_b124) 2010 Huo (10.1016/j.apenergy.2021.116601_b135) 2019 Nychis (10.1016/j.apenergy.2021.116601_b36) 2008 (10.1016/j.apenergy.2021.116601_b220) 2019 Al-Kababji (10.1016/j.apenergy.2021.116601_b251) 2020 Janetzko (10.1016/j.apenergy.2021.116601_b170) 2014; 38 Salinas (10.1016/j.apenergy.2021.116601_b210) 2016; 31 Al-Kababji (10.1016/j.apenergy.2021.116601_b252) 2020 Jakkula (10.1016/j.apenergy.2021.116601_b104) 2010 Sardianos (10.1016/j.apenergy.2021.116601_b239) 2020 Rashidi (10.1016/j.apenergy.2021.116601_b102) 2011 Kauffmann (10.1016/j.apenergy.2021.116601_b236) 2020 Wun (10.1016/j.apenergy.2021.116601_b126) 2019 Zyabkina (10.1016/j.apenergy.2021.116601_b145) 2018 Breunig (10.1016/j.apenergy.2021.116601_b154) 2000; 29 Liu (10.1016/j.apenergy.2021.116601_b247) 2020; 208 Akoglu (10.1016/j.apenergy.2021.116601_b162) 2015; 29 Laaroussi (10.1016/j.apenergy.2021.116601_b187) 2020; 63 Zhang (10.1016/j.apenergy.2021.116601_b94) 2011 Shabestary (10.1016/j.apenergy.2021.116601_b244) 2018 Himeur (10.1016/j.apenergy.2021.116601_b262) 2020 Liu (10.1016/j.apenergy.2021.116601_b46) 2012; 6 Kudo (10.1016/j.apenergy.2021.116601_b52) 2013 Aberkane (10.1016/j.apenergy.2021.116601_b243) 2019 Xu (10.1016/j.apenergy.2021.116601_b116) 2019; 2019 Qiu (10.1016/j.apenergy.2021.116601_b141) 2018 Munir (10.1016/j.apenergy.2021.116601_b65) 2019; 19 Choi (10.1016/j.apenergy.2021.116601_b71) 2020 Yeckle (10.1016/j.apenergy.2021.116601_b35) 2018 Izumi (10.1016/j.apenergy.2021.116601_b206) 2018; 14 Primartha (10.1016/j.apenergy.2021.116601_b127) 2017 Araya (10.1016/j.apenergy.2021.116601_b130) 2016 Wang (10.1016/j.apenergy.2021.116601_b176) 2016 Zeng (10.1016/j.apenergy.2021.116601_b89) 2010 (10.1016/j.apenergy.2021.116601_b224) 2020 Feng (10.1016/j.apenergy.2021.116601_b29) 2017; 13 Farag (10.1016/j.apenergy.2021.116601_b165) 2019 Petladwala (10.1016/j.apenergy.2021.116601_b142) 2019 Bose (10.1016/j.apenergy.2021.116601_b240) 2019 Lipcak (10.1016/j.apenergy.2021.116601_b147) 2019 Zhou (10.1016/j.apenergy.2021.116601_b157) 2017 Tang (10.1016/j.apenergy.2021.116601_b68) 2019; 26 Huang (10.1016/j.apenergy.2021.116601_b74) 2020; 105 Sayed (10.1016/j.apenergy.2021.116601_b241) 2021 Ghori (10.1016/j.apenergy.2021.116601_b45) 2020 Araya (10.1016/j.apenergy.2021.116601_b125) 2017; 144 (10.1016/j.apenergy.2021.116601_b223) 2020 Depuru (10.1016/j.apenergy.2021.116601_b110) 2011 Amara korba (10.1016/j.apenergy.2021.116601_b111) 2019 Reif (10.1016/j.apenergy.2021.116601_b115) 2008 Dilraj (10.1016/j.apenergy.2021.116601_b183) 2019 Yen (10.1016/j.apenergy.2021.116601_b148) 2019; 109 Giannoni (10.1016/j.apenergy.2021.116601_b156) 2018 Patrono (10.1016/j.apenergy.2021.116601_b196) 2018 Rashid (10.1016/j.apenergy.2021.116601_b184) 2018 Chen (10.1016/j.apenergy.2021.116601_b153) 2011; WS-11-07 Budd (10.1016/j.apenergy.2021.116601_b260) 2020; 26 Arjunan (10.1016/j.apenergy.2021.116601_b31) 2015 (10.1016/j.apenergy.2021.116601_b217) 2020 Luo (10.1016/j.apenergy.2021.116601_b201) 2020; 20 Sardianos (10.1016/j.apenergy.2021.116601_b4) 2020 Himeur (10.1016/j.apenergy.2021.116601_b64) 2021 Antwarg (10.1016/j.apenergy.2021.116601_b237) 2019 Alheeti (10.1016/j.apenergy.2021.116601_b56) 2011; 6 Davis (10.1016/j.apenergy.2021.116601_b163) 2011 Luong (10.1016/j.apenergy.2021.116601_b246) 2019; 21 Janakiraman (10.1016/j.apenergy.2021.116601_b90) 2016 Saqaeeyan (10.1016/j.apenergy.2021.116601_b103) 2020; 14 Van Efferen (10.1016/j.apenergy.2021.116601_b87) 2017 (10.1016/j.apenergy.2021.116601_b229) 2020 Dsir (10.1016/j.apenergy.2021.116601_b44) 2013; 46 10.1016/j.apenergy.2021.116601_b161 Wang (10.1016/j.apenergy.2021.116601_b85) 2020; 259 Kleiminger (10.1016/j.apenergy.2021.116601_b188) 2013 Batra (10.1016/j.apenergy.2021.116601_b253) 2019 Liu (10.1016/j.apenergy.2021.116601_b138) 2008 Naveen (10.1016/j.apenergy.2021.116601_b49) 2016; 121 Liu (10.1016/j.apenergy.2021.116601_b203) 2020; 183 Uttama Nambi (10.1016/j.apenergy.2021.116601_b208) 2015 (10.1016/j.apenergy.2021.116601_b228) 2020 Chijoriga (10.1016/j.apenergy.2021.116601_b57) 2011; 6 Li (10.1016/j.apenergy.2021.116601_b73) 2019 (10.1016/j.apenergy.2021.116601_b218) 2020 Wang (10.1016/j.apenergy.2021.116601_b61) 2019 Nilashi (10.10 |
| References_xml | – start-page: 193 year: 2016 end-page: 209 ident: b105 article-title: Online anomaly energy consumption detection using lambda architecture publication-title: Big data analytics and knowledge discovery – start-page: 291 year: 2015 end-page: 295 ident: b123 article-title: Intrusion detection system using bagging ensemble method of machine learning publication-title: 2015 international conference on computing communication control and automation – start-page: 589 year: 2016 end-page: 594 ident: b176 article-title: Anomaly detection in big data with separable compressive sensing publication-title: Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems – volume: 8 year: 2017 ident: b97 article-title: A new anomaly detection system for school electricity consumption data publication-title: Information – start-page: 1 year: 2011 end-page: 8 ident: b110 article-title: Support vector machine based data classification for detection of electricity theft publication-title: 2011 IEEE/PES power systems conference and exposition – start-page: 310 year: 2015 end-page: 313 ident: b63 article-title: A distributed anomaly detection method of operation energy consumption using smart meter data publication-title: 2015 international conference on intelligent information hiding and multimedia signal processing (IIH-MSP) – start-page: 916 year: 2019 end-page: 925 ident: b121 article-title: Employing gradient boosting and anomaly detection for prediction of frauds in energy consumption publication-title: Anais do XVI encontro nacional de inteligência artificial e computacional – volume: 7 start-page: 2169 year: 2019 end-page: 2178 ident: b60 article-title: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus publication-title: IEEE Access – start-page: 35 year: 2015 end-page: 44 ident: b31 article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information publication-title: Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments – start-page: 1 year: 2019 end-page: 23 ident: b166 article-title: Deep semi-supervised anomaly detection – start-page: 1 year: 2021 end-page: 20 ident: b258 article-title: Smart fusion of sensor data and human feedback for personalised energy-saving recommendations publication-title: Int J Intell Syst – start-page: 195 year: 2016 end-page: 200 ident: b70 article-title: Toward an online anomaly intrusion detection system based on deep learning publication-title: 2016 15th IEEE international conference on machine learning and applications (ICMLA) – volume: 31 start-page: 955 year: 2019 end-page: 965 ident: b120 article-title: An in-depth experimental study of anomaly detection using gradient boosted machine publication-title: Neural Comput Appl – reference: Mookiah L, Dean C, Eberle W. Graph-based anomaly detection on smart grid data. In: Proceedings of the thirtieth international florida artificial intelligence research society conference. 2017, p. 306–11. – start-page: 1993 year: 2016 end-page: 2000 ident: b90 article-title: Anomaly detection in aviation data using extreme learning machines publication-title: 2016 international joint conference on neural networks (IJCNN) – volume: 14 start-page: 1175 year: 2018 end-page: 1185 ident: b206 article-title: Real-time pricing by data fusion on networks publication-title: IEEE Trans Ind Inf – volume: 29 start-page: 626 year: 2015 end-page: 688 ident: b162 article-title: Graph based anomaly detection and description: A survey publication-title: Data Min Knowl Discov – start-page: 1 year: 2020 end-page: 6 ident: b239 article-title: Real-time personalised energy saving recommendations publication-title: The 16th IEEE International Conference on Green Computing and Communications (GreenCom) – volume: 9 start-page: 1 year: 2019 end-page: 14 ident: b202 article-title: Smartfog: Training the fog for the energy-saving analytics of smart-meter data publication-title: Appl Sci – volume: 5 start-page: 1 year: 2018 end-page: 28 ident: b180 article-title: Anomaly behaviour detection based on meta-morisita index for large scale spatio-temporal data set publication-title: J Big Data – volume: 279 year: 2020 ident: b13 article-title: The relationship between air pollution and covid-19-related deaths: an application to three french cities publication-title: Appl Energy – volume: 24 start-page: 1641 year: 2003 end-page: 1650 ident: b155 article-title: Discovering cluster-based local outliers publication-title: Pattern Recognit Lett – volume: 227 start-page: 110404 year: 2020 ident: b211 article-title: Building power consumption datasets: survey, taxonomy and future directions publication-title: Energy Buil – volume: 238 start-page: 796 year: 2019 end-page: 805 ident: b20 article-title: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour? publication-title: Appl Energy – volume: 208 start-page: 109675 year: 2020 ident: b247 article-title: Study on deep reinforcement learning techniques for building energy consumption forecasting publication-title: Energy Buil – start-page: 894 year: 2020 end-page: 896 ident: b59 publication-title: Deep learning for anomaly detection – year: 2020 ident: b226 article-title: Hive starter pack – start-page: 141 year: 2016 end-page: 152 ident: b76 article-title: Collective anomaly detection based on long short-term memory recurrent neural networks publication-title: Future data and security engineering – volume: 2 start-page: 305 year: 2020 end-page: 311 ident: b255 article-title: Secure, privacy-preserving and federated machine learning in medical imaging publication-title: Nature Mach Intell – volume: 22 start-page: 121 year: 2017 end-page: 134 ident: b204 article-title: Hybrid computation offloading for smart home automation in mobile cloud computing publication-title: Pers Ubiquitous Comput – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: b30 article-title: Annotation-free learning of plankton for classification and anomaly detection publication-title: Sci Rep – volume: 12 start-page: 1381 year: 2020 end-page: 1401 ident: b19 article-title: A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks publication-title: Cogn Comput – year: 2018 ident: b91 article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing – start-page: 77 year: 2012 end-page: 82 ident: b152 article-title: Computational intelligence based anomaly detection for building energy management systems publication-title: 2012 5th international symposium on resilient control systems – start-page: 597 year: 2019 end-page: 602 ident: b240 article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing publication-title: ASPDAC ’19 – volume: 101 start-page: 189 year: 2018 end-page: 203 ident: b149 article-title: An anomaly detection framework for identifying energy theft and defective meters in smart grids publication-title: Int J Electr Power Energy Syst – start-page: 2407 year: 2019 end-page: 2412 ident: b113 article-title: Anomaly detection method of smart meters data based on GMM-lda clustering feature learning and PSO support vector machine publication-title: 2019 IEEE sustainable power and energy conference (ISPEC) – volume: 7 start-page: 8 year: 2020 end-page: 12 ident: b259 article-title: Intelligent recommender systems in the COVID-19 outbreak: The case of wearable healthcare devices publication-title: J Soft Comput Decis Support Syst – volume: 2 start-page: 612 year: 2019 end-page: 624 ident: b151 article-title: Rule-based classification of energy theft and anomalies in consumers load demand profile publication-title: IET Smart Grid – start-page: 394 year: 2020 end-page: 399 ident: b186 article-title: A model for predicting room occupancy based on motion sensor data publication-title: 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT) – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: b169 article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data publication-title: Comput Intell Neurosci – volume: 51 start-page: 1131 year: 2018 end-page: 1136 ident: b83 article-title: Anomaly detection in energy consumption for condition-based maintenance of compressed air generation systems: an approach based on artificial neural networks publication-title: IFAC-PapersOnLine – start-page: 703 year: 2019 end-page: 716 ident: b73 article-title: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks publication-title: Artificial neural networks and machine learning – ICANN 2019: Text and time series – year: 2020 ident: b217 article-title: Ecoisme – start-page: 286 year: 2018 end-page: 293 ident: b244 article-title: Deep learning vs. Discrete reinforcement learning for adaptive traffic signal control publication-title: 2018 21st International Conference on Intelligent Transportation Systems (ITSC) – start-page: 477 year: 2019 end-page: 481 ident: b126 article-title: Research on anomaly detection method for electro-data publication-title: 2019 IEEE sustainable power and energy conference (ISPEC) – volume: 19 start-page: 1 year: 2019 end-page: 18 ident: b88 article-title: Anomaly detections for manufacturing systems based on sensor data—Insights into two challenging real-world production settings publication-title: Sensors – start-page: 1 year: 2019 end-page: 5 ident: b243 article-title: Deep reinforcement learning for real-world anomaly detection in surveillance videos publication-title: 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA) – year: 2020 ident: b219 article-title: Verv energy – volume: 7 start-page: 9645 year: 2019 end-page: 9657 ident: b79 article-title: Drift-aware methodology for anomaly detection in smart grid publication-title: IEEE Access – year: 2020 ident: b229 article-title: Enertalk: Energy monitoring with big data analysis – year: 2016 ident: b24 publication-title: Clustering algorithms for intrusion detection: A broad visualization – start-page: 4921 year: 2018 end-page: 4925 ident: b78 article-title: Energy anomaly detection with forecasting and deep learning publication-title: 2018 IEEE international conference on big data (Big Data) – start-page: 1 year: 2008 end-page: 6 ident: b112 article-title: Detection of abnormalities and electricity theft using genetic support vector machines publication-title: TENCON 2008 - 2008 IEEE region 10 conference – start-page: 368 year: 2010 end-page: 383 ident: b124 article-title: Mining outliers with ensemble of heterogeneous detectors on random subspaces publication-title: Database systems for advanced applications – volume: 24 start-page: 23 year: 2018 end-page: 33 ident: b171 article-title: Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data publication-title: IEEE Trans Vis Comput Graphics – start-page: 1 year: 2018 end-page: 6 ident: b95 article-title: An anomaly detection model for enhancing energy management in smart buildings publication-title: 2018 IEEE international conference on communications, control, and computing technologies for smart grids (SmartGridComm) – volume: 112 start-page: 381 year: 2020 end-page: 393 ident: b21 article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach publication-title: Environ Sci Policy – start-page: 375 year: 2019 end-page: 382 ident: b72 article-title: Time series anomaly detection based on GAN publication-title: 2019 sixth international conference on social networks analysis, management and security (SNAMS) – year: 2020 ident: b223 article-title: Verdigris – start-page: 1 year: 2020 end-page: 22 ident: b231 article-title: An intelligent non-intrusive load monitoring scheme based on 2D phase encoding of power signals publication-title: Int J Intell Syst – start-page: 487 year: 2019 end-page: 491 ident: b61 article-title: Power consumption predicting and anomaly detection based on long short-term memory neural network publication-title: 2019 IEEE 4th international conference on cloud computing and big data analysis (ICCCBDA) – volume: 19 start-page: 31 year: 2009 end-page: 51 ident: b136 article-title: Resolution-based outlier factor: Detecting the top-n most outlying data points in engineering data publication-title: Knowl Inf Syst – year: 2011 ident: b163 article-title: Detecting anomalies in graphs with numeric labels – start-page: 1 year: 2016 end-page: 6 ident: b84 article-title: Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network publication-title: 2016 IEEE electrical power and energy conference (EPEC) – start-page: 1 year: 2020 end-page: 8 ident: b15 article-title: Improving in-home appliance identification using fuzzy-neighbors-preserving analysis based QR-decomposition publication-title: International congress on information and communication technology (ICICT) – start-page: 45 year: 2015 end-page: 54 ident: b208 article-title: Loced: Location-aware energy disaggregation framework publication-title: Proceedings of the 2Nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments – start-page: 561 year: 2015 end-page: 566 ident: b189 article-title: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data publication-title: 2015 IEEE International Conference on Communications (ICC) – volume: 21 start-page: 3133 year: 2019 end-page: 3174 ident: b246 article-title: Applications of deep reinforcement learning in communications and networking: A survey publication-title: IEEE Commun Surv Tutor – start-page: 136 year: 2014 end-page: 142 ident: b82 article-title: Energy consumption data based machine anomaly detection publication-title: 2014 second international conference on advanced cloud and big data – start-page: 1 year: 2019 end-page: 37 ident: b237 article-title: Explaining anomalies detected by autoencoders using SHAP – start-page: 1 year: 2019 end-page: 5 ident: b77 article-title: A method for anomaly prediction in power consumption using long short-term memory and negative selection publication-title: 2019 IEEE international symposium on circuits and systems (ISCAS) – start-page: 1 year: 2013 end-page: 8 ident: b188 article-title: Occupancy detection from electricity consumption data publication-title: BuildSys’13 – start-page: 157 year: 2005 end-page: 166 ident: b129 article-title: Feature bagging for outlier detection publication-title: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining – start-page: 1330 year: 2013 end-page: 1334 ident: b52 article-title: Pca-based robust anomaly detection using periodic traffic behavior publication-title: 2013 IEEE international conference on communications workshops (ICC) – start-page: 311 year: 2018 end-page: 317 ident: b235 article-title: Toward explainable deep neural network based anomaly detection publication-title: 2018 11th International Conference on Human System Interaction (HSI) – volume: 13 year: 2017 ident: b29 article-title: Groupfound: An effective approach to detect suspicious accounts in online social networks publication-title: Int J Distrib Sens Netw – start-page: 511 year: 2016 end-page: 518 ident: b130 article-title: Collective contextual anomaly detection framework for smart buildings publication-title: 2016 international joint conference on neural networks (IJCNN) – start-page: 267 year: 2017 end-page: 275 ident: b144 article-title: Hierarchical time series feature extraction for power consumption anomaly detection publication-title: Advanced computational methods in energy, power, electric vehicles, and their integration – volume: 5 start-page: 4567 year: 2018 end-page: 4579 ident: b205 article-title: City scanner: Building and scheduling a mobile sensing platform for smart city services publication-title: IEEE Internet Things J – reference: Chahla C, Snoussi H, Merghem-Boulahia L, Esseghir M. A novel approach for anomaly detection in power consumption data. In: 8th international conference on pattern recognition applications and methods, Prague, Czech Republic; 2019. – volume: 21 year: 2020 ident: b106 article-title: Using multiple data sources to detect manipulated electricity meter by an entropy-inspired metric publication-title: Sustain Energy Grids Netw – volume: 14 start-page: 1606 year: 2018 end-page: 1615 ident: b67 article-title: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids publication-title: IEEE Trans Ind Inf – start-page: 1 year: 2020 end-page: 5 ident: b7 article-title: Efficient multi-descriptor fusion for non-intrusive appliance recognition publication-title: The IEEE international symposium on circuits and systems (ISCAS) – volume: WS-11-07 year: 2011 ident: b40 article-title: Detecting anomalous sensor events in smart home data for enhancing the living experience. publication-title: Artificial intelligence and smarter living – volume: 267 year: 2020 ident: b16 article-title: Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree publication-title: Appl Energy – start-page: 63 year: 2019 end-page: 79 ident: b135 article-title: Anomalydetect: an online distance-based anomaly detection algorithm publication-title: Web services–ICWS 2019 – volume: 157 start-page: 336 year: 2018 end-page: 352 ident: b173 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy – volume: 3 start-page: 66 year: 2017 end-page: 102 ident: b178 article-title: An unsupervised anomaly detection approach using energy-based spatiotemporal graphical modeling publication-title: Cyber-Phys Syst – volume: 13 start-page: 3376 year: 2019 end-page: 3387 ident: b11 article-title: The role of micro-moments: A survey of habitual behavior change and recommender systems for energy saving publication-title: IEEE Syst J – volume: 38 start-page: 27 year: 2014 end-page: 37 ident: b170 article-title: Anomaly detection for visual analytics of power consumption data publication-title: Comput Graph – volume: 13 start-page: 651 year: 2016 end-page: 665 ident: b47 article-title: A new approach to dimensionality reduction for anomaly detection in data traffic publication-title: IEEE Trans Netw Serv Manag – start-page: 120 year: 2016 end-page: 129 ident: b107 article-title: Fraud detection in energy consumption: A supervised approach publication-title: 2016 IEEE international conference on data science and advanced analytics (DSAA) – volume: 149 start-page: 711 year: 2017 end-page: 722 ident: b172 article-title: Early-warning application for real-time detection of energy consumption anomalies in buildings publication-title: Journal of Cleaner Production – start-page: 4169 year: 2018 end-page: 4174 ident: b137 article-title: Anomaly detection for power consumption data based on isolated forest publication-title: 2018 international conference on power system technology (POWERCON) – start-page: 1 year: 2020 end-page: 25 ident: b54 article-title: Smart power consumption abnormality detection in buildings using micro-moments and improved K-nearest neighbors publication-title: Int J Intell Syst – start-page: 734 year: 2015 end-page: 741 ident: b122 article-title: Extracting baseline electricity usage using gradient tree boosting publication-title: 2015 IEEE international conference on smart city/socialcom/sustaincom (SmartCity) – volume: 61 start-page: 89 year: 2014 end-page: 97 ident: b164 article-title: Graph-based approach for outlier detection in sequential data and its application on stock market and weather data publication-title: Knowl Based Syst – year: 2020 ident: b227 article-title: Dig, your energy consultant – volume: 183 start-page: 107212 year: 2020 ident: b203 article-title: Anomaly detection based on machine learning in iot-based vertical plant wall for indoor climate control publication-title: Buil Environ – start-page: 426 year: 2021 end-page: 435 ident: b100 article-title: Bayesian anomaly detection and classification for noisy data publication-title: Intelligent systems design and applications – volume: 21 start-page: 1332 year: 2019 end-page: 1344 ident: b118 article-title: Boosting positive and unlabeled learning for anomaly detection with multi-features publication-title: IEEE Trans Multimed – year: 2020 ident: b225 article-title: Homepulse: Creating value from energy data: the disaggregation challenge – start-page: 188 year: 2021 end-page: 205 ident: b1 article-title: On the applicability of 2d local binary patterns for identifying electrical appliances in non-intrusive load monitoring – start-page: 135 year: 2018 end-page: 140 ident: b35 article-title: Detection of electricity theft in customer consumption using outlier detection algorithms publication-title: 2018 1st international conference on data intelligence and security (ICDIS) – start-page: 1 year: 2017 end-page: 9 ident: b174 article-title: Compressive spectral anomaly detection publication-title: 2017 IEEE International Conference on Computational Photography (ICCP) – start-page: 1 year: 2019 end-page: 27 ident: b25 article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies publication-title: Trans Emerg Telecommun Technol – volume: 105 year: 2020 ident: b74 article-title: Igan-ids: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks publication-title: Ad Hoc Netw – start-page: 1 year: 2017 end-page: 6 ident: b146 article-title: Graph-based anomaly detection on smart grid data publication-title: The thirtieth international flairs conference – volume: 26 start-page: 277 year: 2019 end-page: 281 ident: b42 article-title: One-class convolutional neural network publication-title: IEEE Signal Process Lett – volume: 100 start-page: 143 year: 2019 end-page: 174 ident: b230 article-title: Blockchain technology in the energy sector: a systematic review of challenges and opportunities publication-title: Renewable and Sustainable Energy Reviews – start-page: 1 year: 2019 end-page: 24 ident: b249 article-title: Visual analytics of anomalous user behaviors: A survey – start-page: 1 year: 2020 end-page: 22 ident: b4 article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalised recommendations for energy efficiency publication-title: Int J Intell Syst – volume: 63 start-page: 102420 year: 2020 ident: b187 article-title: Occupant presence and behavior: a major issue for building energy performance simulation and assessment publication-title: Sustain Cities Soc – start-page: 1 year: 2020 end-page: 33 ident: b262 article-title: A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects publication-title: Inf Fusion – start-page: 1 year: 2006 end-page: 6 ident: b108 article-title: Outlier detection in wireless sensor networks using Bayesian belief networks publication-title: 2006 1st international conference on communication systems software middleware – volume: 114 start-page: 341 year: 2017 end-page: 348 ident: b43 article-title: The application of one-class classifier based on cnn in image defect detection publication-title: Procedia Comput Sci – start-page: 1 year: 2018 end-page: 10 ident: b156 article-title: Anomaly detection models for IoT time series data – volume: 7 start-page: 96334 year: 2019 end-page: 96348 ident: b197 article-title: PPETD: Privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks publication-title: IEEE Access – start-page: 1 year: 2020 end-page: 22 ident: b2 article-title: Reshaping consumption habits by exploiting energy-related micro-moment recommendations: a case study publication-title: Communications in computer and information science – start-page: 1 year: 2017 end-page: 5 ident: b157 article-title: A semi-supervised anomaly detection method for wind farm power data preprocessing publication-title: 2017 IEEE power energy society general meeting – start-page: 16 year: 2018 end-page: 25 ident: b18 article-title: Monitor: An abnormality detection approach in buildings energy consumption publication-title: 2018 IEEE 4th international conference on collaboration and internet computing (CIC) – year: 2018 ident: b41 article-title: Anomaly detection using one-class neural networks – volume: 26 year: 2019 ident: b68 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit – start-page: 1 year: 2018 end-page: 6 ident: b145 article-title: A feature-based method for automatic anomaly identification in power quality measurements publication-title: 2018 IEEE international conference on probabilistic methods applied to power systems (PMAPS) – start-page: 610 year: 2011 end-page: 619 ident: b102 article-title: Anomaly detection in categorical datasets using Bayesian networks publication-title: Artificial intelligence and computational intelligence, Vol. 7003 – volume: 33 start-page: 400 year: 2014 end-page: 411 ident: b98 article-title: Real-time detection of anomalous power consumption publication-title: Renew Sustain Energy Rev – start-page: 1017 year: 2017 end-page: 1025 ident: b179 article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) – volume: 55 start-page: 278 year: 2016 end-page: 288 ident: b160 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener Comput Syst – start-page: 1 year: 2020 end-page: 18 ident: b216 article-title: Techno-economic analysis of building energy efficiency systems based on behavioral change: A case study of a novel micro-moments based solution publication-title: Appl Energy – volume: 6 start-page: 132 year: 2011 end-page: 147 ident: b56 article-title: Application of multiple discriminant analysis (mda) as a credit scoring and risk assessment model publication-title: Int J Emerging Mark – start-page: 3570 year: 2014 end-page: 3575 ident: b109 article-title: Statistical anomaly detection in mean and variation of energy consumption publication-title: Proceedings of the 2014 22nd international conference on pattern recognition – start-page: 29 year: 2019 end-page: 41 ident: b139 article-title: Adsas: comprehensive real-time anomaly detection system publication-title: Information security applications – start-page: 17 year: 2011 end-page: 24 ident: b117 article-title: Approach based ensemble methods for better and faster intrusion detection publication-title: Computational intelligence in security for information systems – start-page: 771 year: 2019 end-page: 780 ident: b147 article-title: Big data platform for smart grids power consumption anomaly detection publication-title: 2019 federated conference on computer science and information systems (FedCSIS) – start-page: 1 year: 2019 end-page: 6 ident: b256 article-title: Towards efficient and privacy-preserving federated deep learning publication-title: ICC 2019 - 2019 IEEE International Conference on Communications (ICC) – start-page: 71 year: 2020 end-page: 74 ident: b71 article-title: Gan-based anomaly detection and localization of multivariate time series data for power plant publication-title: 2020 IEEE international conference on big data and smart computing (BigComp) – start-page: 33 year: 2018 end-page: 42 ident: b184 article-title: Rimor: Towards identifying anomalous appliances in buildings publication-title: BuildSys ’18 – start-page: 33 year: 2019 end-page: 40 ident: b55 article-title: Edge mining on IoT devices using anomaly detection publication-title: 2019 Asia-Pacific signal and information processing association annual summit and conference (APSIPA ASC) – start-page: 29 year: 2010 end-page: 33 ident: b104 article-title: Outlier detection in smart environment structured power datasets publication-title: 2010 sixth international conference on intelligent environments – start-page: 1 year: 2020 end-page: 18 ident: b251 article-title: Interactive visual analytics for residential energy big data publication-title: Inform Vis – volume: 158 start-page: 1533 year: 2018 end-page: 1543 ident: b119 article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings publication-title: Energy Build – start-page: 1 year: 2020 end-page: 8 ident: b261 article-title: A micro-moment system for domestic energy efficiency analysis publication-title: IEEE Syst J – volume: 2019 start-page: 1 year: 2019 end-page: 11 ident: b116 article-title: Recent progress of anomaly detection publication-title: Complexity – volume: 26 start-page: 1 year: 2020 end-page: 10 ident: b260 article-title: Digital technologies in the public-health response to COVID-19 publication-title: Nature Med – volume: 27 start-page: 486 year: 2013 end-page: 495 ident: b93 article-title: Support vector regression for anomaly detection from measurement histories publication-title: Adv Eng Inform – volume: 29 start-page: 93 year: 2000 end-page: 104 ident: b154 article-title: Lof: Identifying density-based local outliers publication-title: SIGMOD Rec – start-page: 250 year: 2011 end-page: 255 ident: b175 article-title: Distributed anomaly event detection in wireless networks using compressed sensing publication-title: 2011 11th International Symposium on Communications Information Technologies (ISCIT) – volume: 279 start-page: 115872 year: 2020 ident: b209 article-title: Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction publication-title: Appl Energy – volume: 17 start-page: 2367 year: 2015 end-page: 2408 ident: b37 article-title: An entropy-based network anomaly detection method publication-title: Entropy – start-page: 265 year: 2014 end-page: 276 ident: b254 article-title: NILMTK: An open source toolkit for non-intrusive load monitoring publication-title: Proceedings of the 5th International Conference on Future Energy Systems – volume: 56 start-page: 242 year: 2016 end-page: 255 ident: b150 article-title: Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach publication-title: Expert Syst Appl – volume: 6 start-page: 9623 year: 2018 end-page: 9631 ident: b128 article-title: Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things publication-title: IEEE Access – start-page: 263 year: 2014 end-page: 270 ident: b212 article-title: Concept drift detection based on anomaly analysis publication-title: Neural Information Processing – start-page: 413 year: 2008 end-page: 422 ident: b138 article-title: Isolation forest publication-title: 2008 eighth IEEE international conference on data mining – start-page: 8325 year: 2019 end-page: 8329 ident: b23 article-title: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection publication-title: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) – start-page: 1 year: 2008 end-page: 4 ident: b115 article-title: Anomaly detection by combining decision trees and parametric densities publication-title: 2008 19th international conference on pattern recognition – start-page: 1 year: 2017 end-page: 6 ident: b87 article-title: A multi-layer perceptron approach for flow-based anomaly detection publication-title: 2017 international symposium on networks, computers and communications (ISNCC) – volume: WS-11-07 year: 2011 ident: b153 article-title: Energy outlier detection in smart environments publication-title: Artificial intelligence and smarter living – start-page: 134 year: 2010 end-page: 141 ident: b89 article-title: Construction cosine radial basic function neural networks based on artificial immune networks publication-title: Advanced data mining and applications – start-page: 407 year: 2016 end-page: 418 ident: b193 article-title: F-DETA: A framework for detecting electricity theft attacks in smart grids publication-title: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) – start-page: 1409 year: 2018 end-page: 1416 ident: b69 article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data publication-title: The thirty-third aaai conference on artificial intelligence (AAAI-19) – year: 2017 ident: b233 article-title: Energy disaggregation for identifying anomalous appliance publication-title: Proceedings of the 4th ACM International Conference on Systems for Energy-Efficient Built Environments – volume: 9 start-page: 1089 year: 2016 end-page: 1100 ident: b134 article-title: Distance-based outlier detection in data streams publication-title: Proc VLDB Endow – start-page: 1 year: 2019 end-page: 18 ident: b26 article-title: Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine publication-title: J Mar Eng Technol – volume: 260 year: 2020 ident: b8 article-title: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability publication-title: J Clean Prod – volume: 9 start-page: 1 year: 2020 end-page: 16 ident: b33 article-title: Combining K-means and xgboost models for anomaly detection using log datasets publication-title: Electronics – volume: 68 year: 2020 ident: b12 article-title: Coronavirus comes home? energy use, home energy management, and the social-psychological factors of covid-19 publication-title: Energy Res Soc Sci – start-page: 1 year: 2017 end-page: 6 ident: b127 article-title: Anomaly detection using random forest: A performance revisited publication-title: 2017 international conference on data and software engineering (ICoDSE) – volume: 32 start-page: 948 year: 2016 end-page: 956 ident: b101 article-title: Probabilistic anomaly detection in natural gas time series data publication-title: Int J Forecasting – year: 2020 ident: b221 article-title: Wibeee – start-page: 002313 year: 2016 end-page: 002318 ident: b32 article-title: Anomaly detection in smart grid data: An experience report publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC) – start-page: 740 year: 2018 end-page: 745 ident: b192 article-title: Deep recurrent electricity theft detection in AMI networks with random tuning of hyper-parameters publication-title: 2018 24th International Conference on Pattern Recognition (ICPR) – start-page: 151 year: 2008 end-page: 156 ident: b36 article-title: An empirical evaluation of entropy-based traffic anomaly detection publication-title: IMC ’08 – start-page: 2813 year: 2019 end-page: 2821 ident: b213 article-title: Concept drift adaption for online anomaly detection in structural health monitoring publication-title: Proceedings of the 28th ACM International Conference on Information and Knowledge Management – volume: 55 start-page: 278 year: 2016 end-page: 288 ident: b28 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener Comput Syst – start-page: 1 year: 2019 end-page: 9. ident: b165 article-title: Parallel graph-based anomaly detection technique for sequential data publication-title: J King Saud Univ Comput Inform Sci – volume: 2017 start-page: 1 year: 2017 end-page: 15 ident: b143 article-title: Anomaly detection in smart metering infrastructure with the use of time series analysis publication-title: J Sensors – volume: 4 start-page: 91 year: 2018 end-page: 100 ident: b215 article-title: Power systems big data analytics: an assessment of paradigm shift barriers and prospects publication-title: Energy Rep – year: 2019 ident: b220 article-title: Neurio publication-title: Neurio Sensor W1TM Overview, Product specification – start-page: 1125 year: 2019 end-page: 1130 ident: b250 article-title: Visual anomaly detection in event sequence data publication-title: 2019 IEEE International Conference on Big Data (Big Data) – start-page: 1 year: 2021 end-page: 12 ident: b199 article-title: The emergence of hybrid edge-cloud computing for energy efficiency in buildings publication-title: Proceedings of SAI Intelligent Systems Conference – volume: 112 start-page: 394 year: 2020 end-page: 407 ident: b3 article-title: Rehab-c: recommendations for energy habits change publication-title: Future Gener Comput Syst – volume: 4 start-page: 1 year: 2018 end-page: 25 ident: b58 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: J Imaging – volume: 15 start-page: 55 year: 2013 end-page: 65 ident: b158 article-title: Application of density-based outlier detection to database activity monitoring publication-title: Inf Syst Front – year: 2020 ident: b218 article-title: Informetis – start-page: 1175 year: 2015 end-page: 1179 ident: b114 article-title: Decision tree learning for fraud detection in consumer energy consumption publication-title: 2015 IEEE 14th international conference on machine learning and applications (ICMLA) – reference: Himeur Y, Elsalemi A, Bensaali F, Amira A. Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications. In: Proc. 25th International Conference on Pattern Recognition (ICPR), 2020. p. 1–8. – start-page: 1 year: 2021 end-page: 13 ident: b64 article-title: Detection of appliance-level abnormal energy consumption in buildings using autoencoders and micro-moments publication-title: The fifth international conference on big data and internet of things (BDIoT) – start-page: 1 year: 2016 end-page: 4 ident: b92 article-title: Anomaly detection in network traffic using extreme learning machine publication-title: 2016 IEEE 10th international conference on application of information and communication technologies (AICT) – year: 2020 ident: b222 article-title: Smart impulse – start-page: 1 year: 2020 end-page: 19 ident: b232 article-title: Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier publication-title: Sustainable Cities Soc – volume: 6 start-page: 1 year: 2012 end-page: 39 ident: b46 article-title: Isolation-based anomaly detection publication-title: ACM Trans Knowl Discov Data (TKDD) – volume: 34 start-page: 64 year: 2020 end-page: 79 ident: b86 article-title: Anomaly detection in power generation plants using machine learning and neural networks publication-title: Appl Artif Intell – volume: 259 year: 2020 ident: b85 article-title: Real-time prediction and anomaly detection of electrical load in a residential community publication-title: Appl Energy – start-page: 1513 year: 2013 end-page: 1518 ident: b34 article-title: Anomaly detection in time series data using a fuzzy c-means clustering publication-title: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) – volume: 109 start-page: 1 year: 2019 end-page: 8 ident: b148 article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids publication-title: Int J Electr Power Energy Syst – start-page: 1275 year: 2018 end-page: 1282 ident: b62 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention publication-title: 2018 17th IEEE international conference on machine learning and applications (ICMLA) – start-page: 587 year: 2016 end-page: 591 ident: b133 article-title: Anomaly detection of power consumption based on waveform feature recognition publication-title: 2016 11th international conference on computer science education (ICCSE) – start-page: 1 year: 2020 end-page: 17 ident: b236 article-title: The clever hans effect in anomaly detection – volume: 144 start-page: 191 year: 2017 end-page: 206 ident: b125 article-title: An ensemble learning framework for anomaly detection in building energy consumption publication-title: Energy Build – start-page: 1 year: 2018 end-page: 6 ident: b196 article-title: Unobtrusive detection of home appliance’s usage for elderly monitoring publication-title: 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech) – volume: 8 start-page: 15047 year: 2020 end-page: 15055 ident: b242 article-title: Achieving domestic energy efficiency using micro-moments and intelligent recommendations publication-title: IEEE Access – volume: 19 year: 2019 ident: b65 article-title: Fusead: Unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models publication-title: Sensors – volume: 20 start-page: 1 year: 2020 end-page: 20 ident: b201 article-title: Anomaly detection based latency-aware energy consumption optimization for IoT data-flow services publication-title: Sensors – start-page: 1 year: 2020 end-page: 24 ident: b238 article-title: Explainable deep one-class classification – volume: 46 start-page: 3490 year: 2013 end-page: 3506 ident: b44 article-title: One class random forests publication-title: Pattern Recognit – volume: 121 year: 2016 ident: b49 article-title: Cloud computing for energy management in smart grid - an application survey publication-title: IOP Conf Ser: Mater Sci Eng – volume: 114 start-page: 106 year: 2020 end-page: 117 ident: b81 article-title: Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method publication-title: Int J Refrig – start-page: 264 year: 2019 end-page: 269 ident: b194 article-title: A sensors-based monitoring system of electrical consumptions and home parameters remotely managed by mobile app for elderly habits’ control publication-title: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI) – volume: 10 start-page: 1 year: 2020 end-page: 25 ident: b245 article-title: Application of deep reinforcement learning in traffic signal control: An overview and impact of open traffic data publication-title: Appl Sci – start-page: 193 year: 2019 end-page: 202 ident: b253 article-title: Towards reproducible state-of-the-art energy disaggregation publication-title: BuildSys ’19 – volume: 13 year: 2020 ident: b75 article-title: Generating energy data for machine learning with recurrent generative adversarial networks publication-title: Energies – volume: 31 start-page: 883 year: 2016 end-page: 894 ident: b210 article-title: Privacy-preserving energy theft detection in microgrids: A state estimation approach publication-title: IEEE Trans Power Syst – start-page: 1 year: 2017 end-page: 7 ident: b195 article-title: An innovative approach for monitoring elderly behavior by detecting home appliance’s usage publication-title: 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) – start-page: 312 year: 2020 end-page: 317 ident: b252 article-title: Energy data visualizations on smartphones for triggering behavioral change: Novel vs. Conventional publication-title: 2020 2nd Global Power, Energy and Communication Conference (GPECOM) – volume: 145 year: 2020 ident: b14 article-title: Appliance-specific feedback and social comparisons: evidence from a field experiment on energy conservation publication-title: Energy Policy – volume: vol. 80 start-page: 4393 year: 2018 end-page: 4402 ident: b39 article-title: Deep one-class classification publication-title: Proceedings of Machine Learning Research – year: 2020 ident: b140 article-title: Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks – volume: 14 start-page: 1 year: 2020 end-page: 101 ident: b263 article-title: Explainable recommendation: A survey and new perspectives publication-title: Found Trends® Inform Retr – volume: 211 start-page: 1123 year: 2018 end-page: 1135 ident: b167 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl Energy – start-page: 54 year: 2018 end-page: 59 ident: b132 article-title: Multi-feature fusion based anomaly electro-data detection in smart grid publication-title: 2018 15th international symposium on pervasive systems, algorithms and networks (I-SPAN) – start-page: 96 year: 2020 end-page: 103 ident: b264 article-title: Data analytics, automations, and micro-moment based recommendations for energy efficiency publication-title: 2020 IEEE Sixth International Conference on Big Data Computing Service and Applications (BigDataService) – start-page: 735 year: 2011 end-page: 743 ident: b48 article-title: Conditional anomaly detection with soft harmonic functions publication-title: 2011 IEEE 11th international conference on data mining – volume: 54 year: 2020 ident: b5 article-title: Changing energy cultures? household energy use before and after a building energy efficiency retrofit publication-title: Sustain Cities Soc – volume: 77 start-page: 34 year: 2018 end-page: 47 ident: b96 article-title: Scalable prediction-based online anomaly detection for smart meter data publication-title: Inf Syst – volume: 64 start-page: 99 year: 2020 end-page: 120 ident: b10 article-title: Data fusion strategies for energy efficiency in buildings: overview, challenges and novel orientations publication-title: Inf Fusion – volume: 7 start-page: 139712 year: 2019 end-page: 139725 ident: b168 article-title: Sample efficient home power anomaly detection in real time using semi-supervised learning publication-title: IEEE Access – start-page: 1296 year: 2018 end-page: 1303 ident: b190 article-title: Occupancy detection in smart housing using both aggregated and appliance-specific power consumption data publication-title: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) – start-page: 1 year: 2020 end-page: 5 ident: b17 article-title: Appliance-level monitoring with micro-moment smart plugs publication-title: The fifth international conference on smart city applications (SCA) – start-page: 1 year: 2019 end-page: 17 ident: b131 article-title: Statistical analysis of nearest neighbor methods for anomaly detection publication-title: The 33rd conference on neural information processing systems (NeurIPS 2019) – year: 2020 ident: b224 article-title: Voltaware – volume: 211 year: 2020 ident: b6 article-title: The use of artificial intelligence (ai) methods in the prediction of thermal comfort in buildings: energy implications of ai-based thermal comfort controls publication-title: Energy Build – start-page: 1 year: 2014 end-page: 24 ident: b185 article-title: Monitoring and fault detection of electrical appliances for ambient intelligence publication-title: United States Patent, no. US9476935B2 – start-page: 1 year: 2021 end-page: 13 ident: b241 article-title: Endorsing energy efficiency through accurate appliance-level power monitoring, automation and data visualization publication-title: The 4th International Conference on Networking, Information Systems & Security (NISS 2021) – start-page: 1 year: 2019 end-page: 14 ident: b27 article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system publication-title: Int J Inf Technol – start-page: 2737 year: 2019 end-page: 2741 ident: b142 article-title: Canonical correlation based feature extraction with application to anomaly detection in electric appliances publication-title: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing (ICASSP) – volume: 61 year: 2020 ident: b9 article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads publication-title: Sustain Cities Soc – start-page: 1 year: 2020 end-page: 11 ident: b200 article-title: Edge computing enabled production anomalies detection and energy-efficient production decision approach for discrete manufacturing workshops publication-title: IEEE Access – volume: 162 start-page: 102659 year: 2020 ident: b214 article-title: Confidence guided anomaly detection model for anti-concept drift in dynamic logs publication-title: J Netw Comput Appl – volume: 7 start-page: 62721 year: 2019 end-page: 62733 ident: b22 article-title: Performance evaluation of techniques for identifying abnormal energy consumption in buildings publication-title: IEEE Access – start-page: 115 year: 1998 end-page: 128 ident: b50 article-title: Multiple discriminant analysis – year: 2020 ident: b228 article-title: Real-time energy monitoring software – volume: 6 start-page: 7659 year: 2019 end-page: 7669 ident: b198 article-title: Energy theft detection with energy privacy preservation in the smart grid publication-title: IEEE Internet Things J – volume: 6 start-page: 7175 year: 2019 end-page: 7182 ident: b191 article-title: Classification of occupancy sensor anomalies in connected indoor lighting systems publication-title: IEEE Internet Things J – start-page: 1 year: 2020 end-page: 16 ident: b45 article-title: Performance analysis of machine learning classifiers for non-technical loss detection publication-title: J Ambient Intell Humaniz Comput – volume: 20 start-page: 1773 year: 2014 end-page: 1782 ident: b248 article-title: #FluxFlow: Visual analysis of anomalous information spreading on social media publication-title: IEEE Trans Vis Comput Graphics – start-page: 1 year: 2011 end-page: 8 ident: b94 article-title: Anomaly detection in premise energy consumption data publication-title: 2011 IEEE power and energy society general meeting – start-page: 867 year: 2018 end-page: 873 ident: b141 article-title: Anomaly detection for power consumption patterns in electricity early warning system publication-title: 2018 tenth international conference on advanced computational intelligence (ICACI) – year: 2020 ident: b207 article-title: Power laws: Detecting anomalies in usage – start-page: 545 year: 2015 end-page: 575 ident: b99 publication-title: Probabilistic modeling in machine learning – start-page: 1 year: 2019 end-page: 6 ident: b111 article-title: Smart grid energy fraud detection using SVM publication-title: 2019 international conference on networking and advanced systems (ICNAS) – volume: 33 start-page: 41 year: 2017 end-page: 56 ident: b181 article-title: Spatial anomaly detection in sensor networks using neighborhood information publication-title: Inform Fusion – start-page: 1 year: 2019 end-page: 18. ident: b53 article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data publication-title: Wirel Netw – volume: 5 start-page: 26512 year: 2017 end-page: 26520 ident: b159 article-title: A data-driven clustering approach for fault diagnosis publication-title: IEEE Access – year: 2020 ident: b182 article-title: Enetics – volume: 2019 start-page: 1 year: 2019 end-page: 12 ident: b66 article-title: Electricity theft detection in power grids with deep learning and random forests publication-title: J Electr Comput Eng – start-page: 600 year: 2001 end-page: 604 ident: b51 article-title: A pca classifier and its application in vehicle detection publication-title: IJCNN’01. international joint conference on neural networks. Proceedings (Cat. No. 01CH37222), Vol. 1 – volume: 6 start-page: 132 year: 2011 end-page: 147 ident: b57 article-title: Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model publication-title: Int J Emerging Mark – start-page: 5 year: 2012 end-page: 8 ident: b177 article-title: Fast anomaly detection in smartgrids via sparse approximation theory publication-title: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM) – start-page: 1258 year: 2019 end-page: 1263 ident: b183 article-title: Towards behavioral profiling based anomaly detection for smart homes publication-title: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON) – volume: 14 start-page: 1796 year: 2020 end-page: 1816 ident: b103 article-title: Anomaly detection in smart homes using Bayesian networks publication-title: KSII Trans Internet Inf Syst – start-page: 5107 year: 2016 end-page: 5110 ident: b38 article-title: An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery publication-title: 2016 IEEE international geoscience and remote sensing symposium (IGARSS) – start-page: 115739 year: 2020 ident: b257 article-title: Covid-19: impact analysis and recommendations for power sector operation publication-title: Appl Energy – volume: 9 start-page: 1 issue: 7 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b33 article-title: Combining K-means and xgboost models for anomaly detection using log datasets publication-title: Electronics doi: 10.3390/electronics9071164 – volume: 267 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b16 article-title: Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114877 – start-page: 45 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b208 article-title: Loced: Location-aware energy disaggregation framework – ident: 10.1016/j.apenergy.2021.116601_b80 doi: 10.5220/0007361704830490 – volume: 2 start-page: 305 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b255 article-title: Secure, privacy-preserving and federated machine learning in medical imaging publication-title: Nature Mach Intell doi: 10.1038/s42256-020-0186-1 – start-page: 426 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b100 article-title: Bayesian anomaly detection and classification for noisy data – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b140 – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b146 article-title: Graph-based anomaly detection on smart grid data – start-page: 311 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b235 article-title: Toward explainable deep neural network based anomaly detection – start-page: 1 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b110 article-title: Support vector machine based data classification for detection of electricity theft – volume: 38 start-page: 27 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b170 article-title: Anomaly detection for visual analytics of power consumption data publication-title: Comput Graph doi: 10.1016/j.cag.2013.10.006 – start-page: 589 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b176 article-title: Anomaly detection in big data with separable compressive sensing – volume: 238 start-page: 796 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b20 article-title: Can non-intrusive load monitoring be used for identifying an appliance’s anomalous behaviour? publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.061 – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b145 article-title: A feature-based method for automatic anomaly identification in power quality measurements – start-page: 29 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b139 article-title: Adsas: comprehensive real-time anomaly detection system – start-page: 134 year: 2010 ident: 10.1016/j.apenergy.2021.116601_b89 article-title: Construction cosine radial basic function neural networks based on artificial immune networks – year: 2017 ident: 10.1016/j.apenergy.2021.116601_b233 article-title: Energy disaggregation for identifying anomalous appliance – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b169 article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data publication-title: Comput Intell Neurosci doi: 10.1155/2017/8501683 – volume: 7 start-page: 2169 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b60 article-title: Multi-agent-based unsupervised detection of energy consumption anomalies on smart campus publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2886583 – volume: 7 start-page: 62721 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b22 article-title: Performance evaluation of techniques for identifying abnormal energy consumption in buildings publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915641 – start-page: 151 year: 2008 ident: 10.1016/j.apenergy.2021.116601_b36 article-title: An empirical evaluation of entropy-based traffic anomaly detection – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b195 article-title: An innovative approach for monitoring elderly behavior by detecting home appliance’s usage – start-page: 286 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b244 article-title: Deep learning vs. Discrete reinforcement learning for adaptive traffic signal control – volume: 149 start-page: 711 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b172 article-title: Early-warning application for real-time detection of energy consumption anomalies in buildings publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.02.028 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b116 article-title: Recent progress of anomaly detection publication-title: Complexity doi: 10.1155/2019/2686378 – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b196 article-title: Unobtrusive detection of home appliance’s usage for elderly monitoring – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b131 article-title: Statistical analysis of nearest neighbor methods for anomaly detection – volume: 8 start-page: 15047 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b242 article-title: Achieving domestic energy efficiency using micro-moments and intelligent recommendations publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966640 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b45 article-title: Performance analysis of machine learning classifiers for non-technical loss detection publication-title: J Ambient Intell Humaniz Comput – volume: 279 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b13 article-title: The relationship between air pollution and covid-19-related deaths: an application to three french cities publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115835 – volume: 33 start-page: 41 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b181 article-title: Spatial anomaly detection in sensor networks using neighborhood information publication-title: Inform Fusion doi: 10.1016/j.inffus.2016.04.007 – start-page: 5 year: 2012 ident: 10.1016/j.apenergy.2021.116601_b177 article-title: Fast anomaly detection in smartgrids via sparse approximation theory – volume: 4 start-page: 91 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b215 article-title: Power systems big data analytics: an assessment of paradigm shift barriers and prospects publication-title: Energy Rep doi: 10.1016/j.egyr.2017.11.002 – volume: 4 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b58 article-title: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos publication-title: J Imaging doi: 10.3390/jimaging4020036 – start-page: 413 year: 2008 ident: 10.1016/j.apenergy.2021.116601_b138 article-title: Isolation forest – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b30 article-title: Annotation-free learning of plankton for classification and anomaly detection publication-title: Sci Rep doi: 10.1038/s41598-020-68662-3 – volume: 227 start-page: 110404 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b211 article-title: Building power consumption datasets: survey, taxonomy and future directions publication-title: Energy Buil doi: 10.1016/j.enbuild.2020.110404 – volume: 17 start-page: 2367 issue: 4 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b37 article-title: An entropy-based network anomaly detection method publication-title: Entropy doi: 10.3390/e17042367 – volume: 8 issue: 4 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b97 article-title: A new anomaly detection system for school electricity consumption data publication-title: Information doi: 10.3390/info8040151 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b256 article-title: Towards efficient and privacy-preserving federated deep learning – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b17 article-title: Appliance-level monitoring with micro-moment smart plugs – start-page: 263 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b212 article-title: Concept drift detection based on anomaly analysis – volume: 14 start-page: 1796 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b103 article-title: Anomaly detection in smart homes using Bayesian networks publication-title: KSII Trans Internet Inf Syst – start-page: 2813 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b213 article-title: Concept drift adaption for online anomaly detection in structural health monitoring – volume: 12 start-page: 1381 issue: 6 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b19 article-title: A novel approach for detecting anomalous energy consumption based on micro-moments and deep neural networks publication-title: Cogn Comput doi: 10.1007/s12559-020-09764-y – volume: 157 start-page: 336 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b173 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy doi: 10.1016/j.energy.2018.05.127 – start-page: 894 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b59 – start-page: 587 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b133 article-title: Anomaly detection of power consumption based on waveform feature recognition – start-page: 141 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b76 article-title: Collective anomaly detection based on long short-term memory recurrent neural networks – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b2 article-title: Reshaping consumption habits by exploiting energy-related micro-moment recommendations: a case study – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b231 article-title: An intelligent non-intrusive load monitoring scheme based on 2D phase encoding of power signals publication-title: Int J Intell Syst – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b143 article-title: Anomaly detection in smart metering infrastructure with the use of time series analysis publication-title: J Sensors doi: 10.1155/2017/8782131 – volume: 29 start-page: 626 issn: 1384-5810 issue: 3 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b162 article-title: Graph based anomaly detection and description: A survey publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0365-y – start-page: 734 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b122 article-title: Extracting baseline electricity usage using gradient tree boosting – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b222 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b7 article-title: Efficient multi-descriptor fusion for non-intrusive appliance recognition – volume: 7 start-page: 139712 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b168 article-title: Sample efficient home power anomaly detection in real time using semi-supervised learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2943667 – volume: 46 start-page: 3490 issue: 12 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b44 article-title: One class random forests publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.05.022 – volume: 6 start-page: 132 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b56 article-title: Application of multiple discriminant analysis (mda) as a credit scoring and risk assessment model publication-title: Int J Emerging Mark doi: 10.1108/17468801111119498 – start-page: 771 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b147 article-title: Big data platform for smart grids power consumption anomaly detection – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b87 article-title: A multi-layer perceptron approach for flow-based anomaly detection – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b229 – start-page: 8325 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b23 article-title: Evaluation of non-intrusive load monitoring algorithms for appliance-level anomaly detection – volume: 5 start-page: 26512 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b159 article-title: A data-driven clustering approach for fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2771365 – start-page: 487 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b61 article-title: Power consumption predicting and anomaly detection based on long short-term memory neural network – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b180 article-title: Anomaly behaviour detection based on meta-morisita index for large scale spatio-temporal data set publication-title: J Big Data doi: 10.1186/s40537-018-0133-8 – volume: 105 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b74 article-title: Igan-ids: an imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2020.102177 – start-page: 193 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b253 article-title: Towards reproducible state-of-the-art energy disaggregation – volume: WS-11-07 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b153 article-title: Energy outlier detection in smart environments – volume: 27 start-page: 486 issue: 4 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b93 article-title: Support vector regression for anomaly detection from measurement histories publication-title: Adv Eng Inform doi: 10.1016/j.aei.2013.03.002 – ident: 10.1016/j.apenergy.2021.116601_b234 – volume: 9 start-page: 1 issn: 2076-3417 issue: 19 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b202 article-title: Smartfog: Training the fog for the energy-saving analytics of smart-meter data publication-title: Appl Sci doi: 10.3390/app9194193 – start-page: 4921 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b78 article-title: Energy anomaly detection with forecasting and deep learning – volume: 7 start-page: 96334 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b197 article-title: PPETD: Privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925322 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b54 article-title: Smart power consumption abnormality detection in buildings using micro-moments and improved K-nearest neighbors publication-title: Int J Intell Syst – volume: 21 start-page: 3133 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b246 article-title: Applications of deep reinforcement learning in communications and networking: A survey publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2019.2916583 – start-page: 916 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b121 article-title: Employing gradient boosting and anomaly detection for prediction of frauds in energy consumption – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b218 – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b156 – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b223 – volume: 2019 start-page: 1 issn: 2090-0147 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b66 article-title: Electricity theft detection in power grids with deep learning and random forests publication-title: J Electr Comput Eng doi: 10.1155/2019/4136874 – volume: 14 start-page: 1175 issue: 3 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b206 article-title: Real-time pricing by data fusion on networks publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2776251 – volume: 61 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b9 article-title: Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102283 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b243 article-title: Deep reinforcement learning for real-world anomaly detection in surveillance videos – start-page: 511 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b130 article-title: Collective contextual anomaly detection framework for smart buildings – volume: 14 start-page: 1606 issue: 4 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b67 article-title: Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2785963 – volume: 56 start-page: 242 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b150 article-title: Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.03.002 – volume: 211 start-page: 1123 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b167 article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.005 – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b227 – volume: 145 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b14 article-title: Appliance-specific feedback and social comparisons: evidence from a field experiment on energy conservation publication-title: Energy Policy – start-page: 1275 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b62 article-title: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b226 – start-page: 77 year: 2012 ident: 10.1016/j.apenergy.2021.116601_b152 article-title: Computational intelligence based anomaly detection for building energy management systems – volume: 54 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b5 article-title: Changing energy cultures? household energy use before and after a building energy efficiency retrofit publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2019.101983 – start-page: 545 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b99 – start-page: 610 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b102 article-title: Anomaly detection in categorical datasets using Bayesian networks – volume: 6 start-page: 7659 issue: 5 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b198 article-title: Energy theft detection with energy privacy preservation in the smart grid publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2903312 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b200 article-title: Edge computing enabled production anomalies detection and energy-efficient production decision approach for discrete manufacturing workshops publication-title: IEEE Access – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b182 – start-page: 735 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b48 article-title: Conditional anomaly detection with soft harmonic functions – volume: 19 start-page: 1 issue: 24 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b88 article-title: Anomaly detections for manufacturing systems based on sensor data—Insights into two challenging real-world production settings publication-title: Sensors doi: 10.3390/s19245370 – start-page: 597 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b240 article-title: ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing – volume: 114 start-page: 341 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b43 article-title: The application of one-class classifier based on cnn in image defect detection publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.09.040 – start-page: 1409 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b69 article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data – start-page: 310 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b63 article-title: A distributed anomaly detection method of operation energy consumption using smart meter data – volume: 32 start-page: 948 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b101 article-title: Probabilistic anomaly detection in natural gas time series data publication-title: Int J Forecasting doi: 10.1016/j.ijforecast.2015.06.001 – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b260 article-title: Digital technologies in the public-health response to COVID-19 publication-title: Nature Med doi: 10.1038/s41591-020-1011-4 – start-page: 63 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b135 article-title: Anomalydetect: an online distance-based anomaly detection algorithm – volume: 55 start-page: 278 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b28 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.01.001 – volume: 21 start-page: 1332 issue: 5 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b118 article-title: Boosting positive and unlabeled learning for anomaly detection with multi-features publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2871421 – volume: 22 start-page: 121 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b204 article-title: Hybrid computation offloading for smart home automation in mobile cloud computing publication-title: Pers Ubiquitous Comput doi: 10.1007/s00779-017-1095-0 – start-page: 54 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b132 article-title: Multi-feature fusion based anomaly electro-data detection in smart grid – volume: 26 start-page: 277 issue: 2 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b42 article-title: One-class convolutional neural network publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2018.2889273 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b166 – start-page: 71 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b71 article-title: Gan-based anomaly detection and localization of multivariate time series data for power plant – start-page: 33 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b55 article-title: Edge mining on IoT devices using anomaly detection – start-page: 4169 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b137 article-title: Anomaly detection for power consumption data based on isolated forest – volume: 51 start-page: 1131 issue: 11 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b83 article-title: Anomaly detection in energy consumption for condition-based maintenance of compressed air generation systems: an approach based on artificial neural networks publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.439 – start-page: 1296 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b190 article-title: Occupancy detection in smart housing using both aggregated and appliance-specific power consumption data – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b174 article-title: Compressive spectral anomaly detection – volume: 19 start-page: 31 issn: 0219-1377 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2021.116601_b136 article-title: Resolution-based outlier factor: Detecting the top-n most outlying data points in engineering data publication-title: Knowl Inf Syst doi: 10.1007/s10115-008-0145-3 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b111 article-title: Smart grid energy fraud detection using SVM – volume: 144 start-page: 191 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b125 article-title: An ensemble learning framework for anomaly detection in building energy consumption publication-title: Energy Build doi: 10.1016/j.enbuild.2017.02.058 – volume: 183 start-page: 107212 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b203 article-title: Anomaly detection based on machine learning in iot-based vertical plant wall for indoor climate control publication-title: Buil Environ doi: 10.1016/j.buildenv.2020.107212 – start-page: 002313 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b32 article-title: Anomaly detection in smart grid data: An experience report – volume: 162 start-page: 102659 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b214 article-title: Confidence guided anomaly detection model for anti-concept drift in dynamic logs publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2020.102659 – start-page: 267 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b144 article-title: Hierarchical time series feature extraction for power consumption anomaly detection – start-page: 561 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b189 article-title: Contextual occupancy detection for smart office by pattern recognition of electricity consumption data – start-page: 120 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b107 article-title: Fraud detection in energy consumption: A supervised approach – volume: 100 start-page: 143 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b230 article-title: Blockchain technology in the energy sector: a systematic review of challenges and opportunities publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2018.10.014 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b84 article-title: Anomaly detection in a smart grid using wavelet transform, variance fractal dimension and an artificial neural network – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b165 article-title: Parallel graph-based anomaly detection technique for sequential data publication-title: J King Saud Univ Comput Inform Sci – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b225 – start-page: 740 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b192 article-title: Deep recurrent electricity theft detection in AMI networks with random tuning of hyper-parameters – volume: 29 start-page: 93 issn: 0163-5808 issue: 2 year: 2000 ident: 10.1016/j.apenergy.2021.116601_b154 article-title: Lof: Identifying density-based local outliers publication-title: SIGMOD Rec doi: 10.1145/335191.335388 – start-page: 1 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b199 article-title: The emergence of hybrid edge-cloud computing for energy efficiency in buildings – volume: 259 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b85 article-title: Real-time prediction and anomaly detection of electrical load in a residential community publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114145 – start-page: 115739 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b257 article-title: Covid-19: impact analysis and recommendations for power sector operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115739 – volume: 6 start-page: 9623 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b128 article-title: Multi-view stacking ensemble for power consumption anomaly detection in the context of industrial internet of things publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2805908 – volume: 7 start-page: 8 issue: 4 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b259 article-title: Intelligent recommender systems in the COVID-19 outbreak: The case of wearable healthcare devices publication-title: J Soft Comput Decis Support Syst – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b127 article-title: Anomaly detection using random forest: A performance revisited – start-page: 1 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b157 article-title: A semi-supervised anomaly detection method for wind farm power data preprocessing – start-page: 29 year: 2010 ident: 10.1016/j.apenergy.2021.116601_b104 article-title: Outlier detection in smart environment structured power datasets – volume: 211 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b6 article-title: The use of artificial intelligence (ai) methods in the prediction of thermal comfort in buildings: energy implications of ai-based thermal comfort controls publication-title: Energy Build doi: 10.1016/j.enbuild.2020.109807 – volume: 21 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b106 article-title: Using multiple data sources to detect manipulated electricity meter by an entropy-inspired metric publication-title: Sustain Energy Grids Netw – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b219 – start-page: 157 year: 2005 ident: 10.1016/j.apenergy.2021.116601_b129 article-title: Feature bagging for outlier detection doi: 10.1145/1081870.1081891 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b236 – volume: 6 start-page: 7175 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b191 article-title: Classification of occupancy sensor anomalies in connected indoor lighting systems publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2019.2914937 – volume: 13 issue: 7 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b29 article-title: Groupfound: An effective approach to detect suspicious accounts in online social networks publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147717722499 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b92 article-title: Anomaly detection in network traffic using extreme learning machine – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b27 article-title: A review of supervised and unsupervised machine learning techniques for suspicious behavior recognition in intelligent surveillance system publication-title: Int J Inf Technol – volume: 13 start-page: 3376 issue: 3 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b11 article-title: The role of micro-moments: A survey of habitual behavior change and recommender systems for energy saving publication-title: IEEE Syst J doi: 10.1109/JSYST.2019.2899832 – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b207 – volume: 19 issn: 1424-8220 issue: 11 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b65 article-title: Fusead: Unsupervised anomaly detection in streaming sensors data by fusing statistical and deep learning models publication-title: Sensors doi: 10.3390/s19112451 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b232 article-title: Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier publication-title: Sustainable Cities Soc – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b249 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b25 article-title: Clustering-based real-time anomaly detection—A breakthrough in big data technologies publication-title: Trans Emerg Telecommun Technol – start-page: 1175 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b114 article-title: Decision tree learning for fraud detection in consumer energy consumption – year: 2019 ident: 10.1016/j.apenergy.2021.116601_b220 article-title: Neurio – ident: 10.1016/j.apenergy.2021.116601_b161 – volume: 260 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b8 article-title: Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.121082 – volume: 63 start-page: 102420 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b187 article-title: Occupant presence and behavior: a major issue for building energy performance simulation and assessment publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102420 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b239 article-title: Real-time personalised energy saving recommendations – volume: 13 start-page: 651 issue: 3 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b47 article-title: A new approach to dimensionality reduction for anomaly detection in data traffic publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/TNSM.2016.2597125 – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b251 article-title: Interactive visual analytics for residential energy big data publication-title: Inform Vis – start-page: 1330 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b52 article-title: Pca-based robust anomaly detection using periodic traffic behavior – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b224 – volume: 6 start-page: 132 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b57 article-title: Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model publication-title: Int J Emerging Mark doi: 10.1108/17468801111119498 – start-page: 368 year: 2010 ident: 10.1016/j.apenergy.2021.116601_b124 article-title: Mining outliers with ensemble of heterogeneous detectors on random subspaces – start-page: 265 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b254 article-title: NILMTK: An open source toolkit for non-intrusive load monitoring – start-page: 195 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b70 article-title: Toward an online anomaly intrusion detection system based on deep learning – start-page: 703 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b73 article-title: Mad-gan: multivariate anomaly detection for time series data with generative adversarial networks – volume: 14 start-page: 1 issn: 1554-0669 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b263 article-title: Explainable recommendation: A survey and new perspectives publication-title: Found Trends® Inform Retr doi: 10.1561/1500000066 – start-page: 193 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b105 article-title: Online anomaly energy consumption detection using lambda architecture – start-page: 115 year: 1998 ident: 10.1016/j.apenergy.2021.116601_b50 – start-page: 1 year: 2006 ident: 10.1016/j.apenergy.2021.116601_b108 article-title: Outlier detection in wireless sensor networks using Bayesian belief networks – start-page: 3570 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b109 article-title: Statistical anomaly detection in mean and variation of energy consumption – volume: 101 start-page: 189 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b149 article-title: An anomaly detection framework for identifying energy theft and defective meters in smart grids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2018.03.025 – volume: 61 start-page: 89 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b164 article-title: Graph-based approach for outlier detection in sequential data and its application on stock market and weather data publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.02.008 – volume: 2 start-page: 612 issue: 4 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b151 article-title: Rule-based classification of energy theft and anomalies in consumers load demand profile publication-title: IET Smart Grid doi: 10.1049/iet-stg.2019.0081 – volume: WS-11-07 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b40 article-title: Detecting anomalous sensor events in smart home data for enhancing the living experience. – start-page: 477 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b126 article-title: Research on anomaly detection method for electro-data – start-page: 188 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b1 article-title: On the applicability of 2d local binary patterns for identifying electrical appliances in non-intrusive load monitoring – start-page: 250 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b175 article-title: Distributed anomaly event detection in wireless networks using compressed sensing – volume: 10 start-page: 1 issue: 11 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b245 article-title: Application of deep reinforcement learning in traffic signal control: An overview and impact of open traffic data publication-title: Appl Sci doi: 10.3390/app10114011 – start-page: 312 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b252 article-title: Energy data visualizations on smartphones for triggering behavioral change: Novel vs. Conventional – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b261 article-title: A micro-moment system for domestic energy efficiency analysis publication-title: IEEE Syst J – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b238 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b237 – volume: 112 start-page: 394 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b3 article-title: Rehab-c: recommendations for energy habits change publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.05.041 – start-page: 1 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b241 article-title: Endorsing energy efficiency through accurate appliance-level power monitoring, automation and data visualization – year: 2016 ident: 10.1016/j.apenergy.2021.116601_b24 – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b26 article-title: Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine publication-title: J Mar Eng Technol – volume: 7 start-page: 9645 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b79 article-title: Drift-aware methodology for anomaly detection in smart grid publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891315 – start-page: 1258 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b183 article-title: Towards behavioral profiling based anomaly detection for smart homes – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b216 article-title: Techno-economic analysis of building energy efficiency systems based on behavioral change: A case study of a novel micro-moments based solution publication-title: Appl Energy – volume: 13 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b75 article-title: Generating energy data for machine learning with recurrent generative adversarial networks publication-title: Energies doi: 10.3390/en13010130 – volume: 279 start-page: 115872 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b209 article-title: Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115872 – start-page: 96 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b264 article-title: Data analytics, automations, and micro-moment based recommendations for energy efficiency – start-page: 375 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b72 article-title: Time series anomaly detection based on GAN – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b262 article-title: A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects publication-title: Inf Fusion – volume: 114 start-page: 106 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b81 article-title: Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method publication-title: Int J Refrig doi: 10.1016/j.ijrefrig.2020.02.035 – volume: 20 start-page: 1773 issue: 12 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b248 article-title: #FluxFlow: Visual analysis of anomalous information spreading on social media publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2014.2346922 – start-page: 1017 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b179 article-title: Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space – start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b53 article-title: Detecting anomalous energy consumption using contextual analysis of smart meter data publication-title: Wirel Netw – volume: 77 start-page: 34 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b96 article-title: Scalable prediction-based online anomaly detection for smart meter data publication-title: Inf Syst doi: 10.1016/j.is.2018.05.007 – volume: 112 start-page: 381 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b21 article-title: Can smart energy information interventions help householders save electricity? a svr machine learning approach publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2020.07.003 – volume: 64 start-page: 99 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b10 article-title: Data fusion strategies for energy efficiency in buildings: overview, challenges and novel orientations publication-title: Inf Fusion doi: 10.1016/j.inffus.2020.07.003 – start-page: 5107 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b38 article-title: An outlier generation approach for one-class random forests: An example in one-class classification of remote sensing imagery – start-page: 16 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b18 article-title: Monitor: An abnormality detection approach in buildings energy consumption – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b15 article-title: Improving in-home appliance identification using fuzzy-neighbors-preserving analysis based QR-decomposition – start-page: 600 year: 2001 ident: 10.1016/j.apenergy.2021.116601_b51 article-title: A pca classifier and its application in vehicle detection – volume: 55 start-page: 278 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b160 article-title: A survey of anomaly detection techniques in financial domain publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2015.01.001 – volume: 33 start-page: 400 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b98 article-title: Real-time detection of anomalous power consumption publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.01.088 – start-page: 1 issn: 2158-1525 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b77 article-title: A method for anomaly prediction in power consumption using long short-term memory and negative selection – year: 2011 ident: 10.1016/j.apenergy.2021.116601_b163 – start-page: 1993 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b90 article-title: Anomaly detection in aviation data using extreme learning machines – volume: 3 start-page: 66 issue: 1–4 year: 2017 ident: 10.1016/j.apenergy.2021.116601_b178 article-title: An unsupervised anomaly detection approach using energy-based spatiotemporal graphical modeling publication-title: Cyber-Phys Syst doi: 10.1080/23335777.2017.1386717 – volume: 158 start-page: 1533 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b119 article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2017.11.039 – start-page: 2737 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b142 article-title: Canonical correlation based feature extraction with application to anomaly detection in electric appliances – start-page: 1 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b258 article-title: Smart fusion of sensor data and human feedback for personalised energy-saving recommendations publication-title: Int J Intell Syst – start-page: 407 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b193 article-title: F-DETA: A framework for detecting electricity theft attacks in smart grids – volume: 31 start-page: 955 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b120 article-title: An in-depth experimental study of anomaly detection using gradient boosted machine publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3128-z – start-page: 394 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b186 article-title: A model for predicting room occupancy based on motion sensor data – volume: 6 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2021.116601_b46 article-title: Isolation-based anomaly detection publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/2133360.2133363 – start-page: 1 year: 2021 ident: 10.1016/j.apenergy.2021.116601_b64 article-title: Detection of appliance-level abnormal energy consumption in buildings using autoencoders and micro-moments – start-page: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b95 article-title: An anomaly detection model for enhancing energy management in smart buildings – volume: 24 start-page: 1641 issue: 9 year: 2003 ident: 10.1016/j.apenergy.2021.116601_b155 article-title: Discovering cluster-based local outliers publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(03)00003-5 – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b217 – start-page: 291 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b123 article-title: Intrusion detection system using bagging ensemble method of machine learning – start-page: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b4 article-title: The emergence of explainability of intelligent systems: Delivering explainable and personalised recommendations for energy efficiency publication-title: Int J Intell Syst – volume: 15 start-page: 55 issue: 1 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b158 article-title: Application of density-based outlier detection to database activity monitoring publication-title: Inf Syst Front doi: 10.1007/s10796-010-9266-9 – volume: 9 start-page: 1089 issn: 2150-8097 issue: 12 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b134 article-title: Distance-based outlier detection in data streams publication-title: Proc VLDB Endow doi: 10.14778/2994509.2994526 – start-page: 1513 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b34 article-title: Anomaly detection in time series data using a fuzzy c-means clustering – volume: 26 issue: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b68 article-title: Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring publication-title: Struct Control Health Monit doi: 10.1002/stc.2296 – start-page: 1 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b94 article-title: Anomaly detection in premise energy consumption data – volume: 24 start-page: 23 issue: 1 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b171 article-title: Voila: Visual anomaly detection and monitoring with streaming spatiotemporal data publication-title: IEEE Trans Vis Comput Graphics doi: 10.1109/TVCG.2017.2744419 – start-page: 33 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b184 article-title: Rimor: Towards identifying anomalous appliances in buildings – year: 2018 ident: 10.1016/j.apenergy.2021.116601_b91 – start-page: 2407 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b113 article-title: Anomaly detection method of smart meters data based on GMM-lda clustering feature learning and PSO support vector machine – start-page: 1 year: 2013 ident: 10.1016/j.apenergy.2021.116601_b188 article-title: Occupancy detection from electricity consumption data – start-page: 35 year: 2015 ident: 10.1016/j.apenergy.2021.116601_b31 article-title: Multi-user energy consumption monitoring and anomaly detection with partial context information doi: 10.1145/2821650.2821662 – start-page: 1 year: 2008 ident: 10.1016/j.apenergy.2021.116601_b115 article-title: Anomaly detection by combining decision trees and parametric densities – volume: 208 start-page: 109675 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b247 article-title: Study on deep reinforcement learning techniques for building energy consumption forecasting publication-title: Energy Buil doi: 10.1016/j.enbuild.2019.109675 – year: 2018 ident: 10.1016/j.apenergy.2021.116601_b41 – start-page: 264 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b194 article-title: A sensors-based monitoring system of electrical consumptions and home parameters remotely managed by mobile app for elderly habits’ control – start-page: 135 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b35 article-title: Detection of electricity theft in customer consumption using outlier detection algorithms – volume: 34 start-page: 64 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b86 article-title: Anomaly detection in power generation plants using machine learning and neural networks publication-title: Appl Artif Intell doi: 10.1080/08839514.2019.1691839 – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b228 – volume: 31 start-page: 883 issue: 2 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b210 article-title: Privacy-preserving energy theft detection in microgrids: A state estimation approach publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2406311 – start-page: 17 year: 2011 ident: 10.1016/j.apenergy.2021.116601_b117 article-title: Approach based ensemble methods for better and faster intrusion detection – volume: 109 start-page: 1 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b148 article-title: Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2019.01.039 – volume: 68 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b12 article-title: Coronavirus comes home? energy use, home energy management, and the social-psychological factors of covid-19 publication-title: Energy Res Soc Sci – volume: 121 year: 2016 ident: 10.1016/j.apenergy.2021.116601_b49 article-title: Cloud computing for energy management in smart grid - an application survey publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/121/1/012010 – start-page: 136 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b82 article-title: Energy consumption data based machine anomaly detection – volume: 5 start-page: 4567 issue: 6 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b205 article-title: City scanner: Building and scheduling a mobile sensing platform for smart city services publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2018.2839058 – volume: vol. 80 start-page: 4393 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b39 article-title: Deep one-class classification – start-page: 867 year: 2018 ident: 10.1016/j.apenergy.2021.116601_b141 article-title: Anomaly detection for power consumption patterns in electricity early warning system – start-page: 1 year: 2014 ident: 10.1016/j.apenergy.2021.116601_b185 article-title: Monitoring and fault detection of electrical appliances for ambient intelligence – start-page: 1 year: 2008 ident: 10.1016/j.apenergy.2021.116601_b112 article-title: Detection of abnormalities and electricity theft using genetic support vector machines – volume: 20 start-page: 1 issn: 1424-8220 issue: 1 year: 2020 ident: 10.1016/j.apenergy.2021.116601_b201 article-title: Anomaly detection based latency-aware energy consumption optimization for IoT data-flow services publication-title: Sensors – year: 2020 ident: 10.1016/j.apenergy.2021.116601_b221 – start-page: 1125 year: 2019 ident: 10.1016/j.apenergy.2021.116601_b250 article-title: Visual anomaly detection in event sequence data |
| SSID | ssj0002120 |
| Score | 2.7200432 |
| SecondaryResourceType | review_article |
| Snippet | Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116601 |
| SubjectTerms | Anomaly detection artificial intelligence data collection decision making Deep abnormality detection Energy consumption in buildings energy efficiency Energy saving energy use and consumption Machine learning surveys taxonomy |
| Title | Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives |
| URI | https://dx.doi.org/10.1016/j.apenergy.2021.116601 https://www.proquest.com/docview/2574345011 |
| Volume | 287 |
| WOSCitedRecordID | wos000621229600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBSqlpeMxK2kbN42t1BteapCoqDlFDm2o1LtZlebbNUe-SX8VcavxLxUEOISrVbrOJv54vlmMvMZocdhTGRapTTIKKNBQtIsoEQkSglT7YAUR5Xuhfn4Nj86ItMpfTcafXW9MGezvGnI-Tld_ldTw3dgbNU6-xfm7k8KX8BnMDocwexw_CPDFytd_qM34_D1NpW_UrqsizmbXewJ2Unu2KI0DYBct2MuXfljZXfMbk33-srqzh7scavp1Jl6WpV6B3KuFJBd32brc15HdM0sQ657LtcaLp-Av3tv91-csEZqlL45gSBhyBgUsxa82VyXHxSVgNh5yGU_h2icMdPqfcguuL1JNp0RhV4VjM6xuT6boahJ93aNs0DFesZrmaWa5JFaqom_lkfGe__kF0yK4nSfLc1_3VdTg7vIMjv395rb79WEOrYMtQARvYI2ozylsGxuFq8m09e9s4-s8qe7QK8J_dez_Y7__MAENL05volu2LgEFwZPt9BINlvouqdWuYW2J0NTJPzUeoX2NvoyQA77kMMacthCDveQw4sam0vGHuRgKO4h9wwX2ADuCbZwwwZucDqBAW7Yh9sd9OFwcnzwMrBbewQ8SWkXJDIknDDKWCbiPIwYCxUz4olgIicViUWcciaIrJUdGPBMJlnC81TUvE4Fi7fRRrNo5A7CQLHHAjwTOCbg0jInrKpJTHgyriHYYWQXpe6Gl9zq3qvtV2alK3A8LZ2hSmWo0hhqFz3txy2N8sulI6izZ2n5q-GlJcDw0rGPHABKWODVWzt42BbrtgSfmsRJCn747j-c_x66Njxt99FGt1rLB-gqP-s-t6uHFtXfACDX1OY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+based+anomaly+detection+of+energy+consumption+in+buildings%3A+A+review%2C+current+trends+and+new+perspectives&rft.jtitle=Applied+energy&rft.au=Himeur%2C+Yassine&rft.au=Ghanem%2C+Khalida&rft.au=Alsalemi%2C+Abdullah&rft.au=Bensaali%2C+Faycal&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=287&rft_id=info:doi/10.1016%2Fj.apenergy.2021.116601&rft.externalDocID=S0306261921001409 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |