Strain effect on the electronic and optical characteristics of FAGeX3 (X=Cl, Br, and I) perovskite materials: DFT analysis
This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to...
Gespeichert in:
| Veröffentlicht in: | Heliyon Jg. 10; H. 21; S. e39799 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.11.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 2405-8440, 2405-8440 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications. |
|---|---|
| AbstractList | This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications. This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the -6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the -6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications. This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX₃), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl₃ showing the highest bandgap (2.1359 eV), followed by FAGeBr₃ (1.7325 eV), and FAGeI₃ with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX₃ perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications. |
| ArticleNumber | e39799 |
| Author | Haque, Md. Mahfuzul Amanullah, Md Mia, Md. Roman Islam, Md. Rasidul |
| Author_xml | – sequence: 1 givenname: Md. Mahfuzul orcidid: 0000-0003-2769-2265 surname: Haque fullname: Haque, Md. Mahfuzul email: mahfuz.eee@bsfmstu.ac.bd, md.mhshuvo@gmail.com – sequence: 2 givenname: Md surname: Amanullah fullname: Amanullah, Md – sequence: 3 givenname: Md. Roman surname: Mia fullname: Mia, Md. Roman – sequence: 4 givenname: Md. Rasidul surname: Islam fullname: Islam, Md. Rasidul |
| BookMark | eNqNksFuEzEQhleoSJTSR0DysUhNsNf22gtCqKRNiVSJA0XqzZr1zjYOzjq1N5HC0-M0EaJcysn2eP7PM-P_dXHUhx6L4i2jY0ZZ9X4xnqN329CPS1qKMfJa1fWL4rgUVI60EPTor_2r4jSlBaWUSV3Vih8Xv74PEVxPsOvQDiT0ZJgjQZ8PMfTOEuhbElaDs-CJnUMEO2B0KQcSCR2ZXlzjHSdnd58m_px8ieePgtk7ssIYNumnG5AsYScBnz6Qy-ltTgC_TS69KV52OYinh_Wk-DG9up18Hd18u55NLm5GVsi6HnVlWXFsGAeorLadtrZmCkEpbnnd1KBa3laNaCvOJXCQDQhhG1ZxLSuBlJ8Usz23DbAwq-iWELcmgDOPgRDvDcTcj0fTYEOVavMLEoSUrRZoO1WC4qXSVnWZ9XnPWq2bJbYW-zw-_wT69KZ3c3MfNoYxKSnlOhPODoQYHtaYBrN0yaL30GNYJ8OZFExprsv_SC21kqyWux7lPtXGkFLE7k9JjJqdT8zCHHxidj4xe59k3cd_dNYNMLiwq975Z9WHaWD-vo3DaJJ12FtsXcwGyvN1zxB-A8Yz3-o |
| CitedBy_id | crossref_primary_10_1016_j_matchemphys_2025_131241 crossref_primary_10_1002_pssa_202500200 crossref_primary_10_1016_j_micrna_2025_208150 crossref_primary_10_1016_j_optcom_2025_131873 |
| Cites_doi | 10.1038/nphoton.2014.82 10.1016/j.solener.2024.112783 10.1021/acs.jpcc.8b11695 10.1016/j.solener.2018.11.050 10.1039/C5TC03417E 10.1016/j.mineng.2003.11.014 10.1039/C5TA00190K 10.1088/0953-8984/21/39/395502 10.1021/acs.jpclett.6b00376 10.1007/s11426-019-9520-1 10.3390/s21072267 10.1039/C5NR05337D 10.1007/s00706-017-1933-9 10.1016/j.tsf.2024.140432 10.1002/aenm.201602512 10.1016/S0370-2693(97)00392-4 10.1149/2162-8777/ac56c2 10.1002/anie.201309361 10.1039/C4CP02113D 10.2478/v10102-012-0009-2 10.1021/acs.jchemed.6b00165 10.1021/jacs.5b13294 10.1002/adma.201401991 10.1016/j.physb.2022.413960 10.1021/acs.jpcc.2c00558 10.1021/jp411112k 10.1039/C5TA05741H 10.1016/j.jallcom.2022.165062 10.1016/j.rio.2023.100554 10.1016/j.jallcom.2021.159589 10.1093/occmed/kqh019 10.1016/j.commatsci.2019.109118 10.1126/science.1228604 10.1021/acs.jpcc.0c03672 10.1088/1402-4896/ac6e9a 10.1016/j.mattod.2014.07.007 10.1002/smtd.201700310 10.1039/C4EE01076K 10.1063/1.1564060 10.1002/anie.202011833 10.1002/adma.201600669 10.1016/j.ijleo.2020.165430 10.1002/pssb.202400217 10.1039/C6RA18534G 10.1021/acs.chemrev.8b00539 10.1002/qua.26671 10.1103/PhysRevApplied.5.014012 10.1039/c3ee43822h 10.1016/j.ssc.2022.114918 10.1021/ja809598r 10.1016/j.cej.2020.124757 10.3390/ma11061008 10.1021/jacs.5b01025 10.1021/nl5012992 10.15251/DJNB.2024.192.525 10.1021/acs.jpclett.8b03194 10.1016/j.solmat.2018.12.038 10.1021/cm404006p 10.1002/er.8008 10.1007/s40820-023-01140-3 10.1021/acs.jpclett.6b02682 10.1002/ange.201800660 10.1002/aenm.201501310 10.1103/PhysRev.112.1555 10.1103/PhysRevB.23.5048 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.heliyon.2024.e39799 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-8440 |
| ExternalDocumentID | oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f PMC11550038 10_1016_j_heliyon_2024_e39799 S2405844024158306 |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4599-f2263eb13aa6c8cf8cc917ea773c39b9a7d3d6b4d6335a3a5ba44cb1638564e03 |
| IEDL.DBID | DOA |
| ISSN | 2405-8440 |
| IngestDate | Fri Oct 03 12:50:56 EDT 2025 Tue Sep 30 17:07:06 EDT 2025 Fri Aug 22 20:19:44 EDT 2025 Fri Jul 11 10:28:40 EDT 2025 Thu Nov 20 00:57:06 EST 2025 Tue Nov 18 21:32:24 EST 2025 Sat Nov 29 17:03:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | Perovskite Formamidinium Electronic properties Optical properties Density functional theory (DFT) Biaxial strain |
| Language | English |
| License | This is an open access article under the CC BY-NC license. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4599-f2263eb13aa6c8cf8cc917ea773c39b9a7d3d6b4d6335a3a5ba44cb1638564e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2769-2265 |
| OpenAccessLink | https://doaj.org/article/beb077dcc95a455d84ecf72a73278c7f |
| PQID | 3128751950 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550038 proquest_miscellaneous_3154178382 proquest_miscellaneous_3128751950 crossref_primary_10_1016_j_heliyon_2024_e39799 crossref_citationtrail_10_1016_j_heliyon_2024_e39799 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e39799 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-15 |
| PublicationDateYYYYMMDD | 2024-11-15 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Heliyon |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Koh (bib16) 2014; 118 Krishnamoorthy (bib30) 2015; 3 Aldaghfag, Ishfaq, Nasarullah & Yaseen (bib74) 2024; 19 Hopfield (bib75) 1958; 112 Lee (bib14) 2015; 5 Xuan, Xie (bib63) 2020; 393 Alahnomi (bib76) 2021; 21 Moskalyk (bib26) 2004; 17 Islam (bib35) 2022; 11 Valadares, Guilhon, Teles, Marques (bib62) 2020; 124 Pachori, Agarwal, Shukla, Rani, Verma (bib40) 2021; 121 Kumar (bib20) 2014; 26 Keith, Faroon, Maples-Reynolds, Fowler (bib25) 2014 Islam (bib32) 2022; 31 Lu (bib65) 2016; 6 Noel (bib28) 2014; 7 Perdew, Burke, Ernzerhof (bib46) 1996 Perdew, Zunger (bib44) 1981; 23 RaeisianAsl, Panahi, Jamaati, Tafreshi (bib52) 2022; 46 Volonakis (bib67) 2016; 7 El Arfaoui, Khenfouch, Habiballah (bib49) 2024 Zheng (bib60) 2024; 278 Lan (bib23) 2019; 177 Ran, Xiong, Zhong, Yuan (bib71) 2022; 126 . Islam, Moghal, Moshwan (bib33) 2022; 97 Valenzano (bib38) 2021; 2 Zhang (bib54) 2023; 15 Jank, Hafner (bib27) 1990; 8 Cheragee, Akhi, Dev, Haque, Alam (bib58) 2024; 801 Slavney, Hu, Lindenberg, Karunadasa (bib68) 2016; 138 Hoefler, Trimmel, Rath (bib36) 2017; 148 Heyd, Scuseria, Ernzerhof (bib47) 2003; 118 Wagner (bib57) 2016; 93 Eperon (bib13) 2014; 7 Liu, van Iersel (bib56) 2021; 12 Yang, W. S. et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Karsch, Patkas, Petreczlq (bib48) 1997; 401 Pang (bib51) 2014; 26 Wang (bib10) 2021; 872 Stoumpos (bib61) 2015; 137 Han (bib73) 2019; 62 Shirayama (bib5) 2016; 5 Hao, Stoumpos, Cao, Chang, Kanatzidis (bib19) 2014; 8 Kojima, Teshima, Shirai, Miyasaka (bib6) 2009; 131 Chen, Zhou, Jin, Li, Zhai (bib66) 2016; 4 Liu, Li, Jing, Wu (bib64) 2019; 123 Roknuzzaman (bib24) 2019; 169 Yang (bib70) 2018; 130 Xiang (bib43) 2022; 354 Zhu, T. Pérovskites Hybrides et Ingénierie d’interface Pour l’amélioration Des Dispositifs Optoélectroniques. Giannozzi (bib45) 2009; 21 Karthick, Rios-Ramirez, Velumani (bib31) 2020 Koh (bib22) 2015; 3 Wang, Fu, Wang (bib50) 2017; 26 Lv (bib8) 2014; 16 Volonakis (bib69) 2017; 8 Kim, Han, Choi, Kim, Jang (bib53) 2018; 2 El Arfaoui, Khenfouch, Habiballah (bib59) 2023; 13 Pellet (bib12) 2014; 53 Fu (bib39) 2019; 193 Park (bib1) 2015; 18 Flora, Gupta, Tiwari (bib17) 2012; 5 Jena, Kulkarni, Miyasaka (bib41) 2019; 119 Veldhuis (bib4) 2016; 28 Sun, Li, Yang, Li (bib21) 2016; 8 Bhattarai, Sharma, Das (bib9) 2020; 224 Lyu, Yun, Chen, Hao, Wang (bib2) 2017; 7 Zhou (bib3) 2022; 911 Gidlow (bib18) 2004; 54 Lee, Teuscher, Miyasaka, Murakami, Snaith (bib7) 2012; 338 Amat (bib11) 2014; 14 Islam (bib34) 2022; 638 Liu, Nag, Manna, Xia (bib72) 2021; 60 Sani, Shafie, Lim, Musa (bib37) 2018; 11 Gao, Ran, Li, Dong, Jiao, Zhang, Lan, Hou, Wu (bib42) 2018; 9 Durazzo, Durazzo (bib55) El Arfaoui (10.1016/j.heliyon.2024.e39799_bib49) 2024 Lee (10.1016/j.heliyon.2024.e39799_bib7) 2012; 338 Roknuzzaman (10.1016/j.heliyon.2024.e39799_bib24) 2019; 169 Eperon (10.1016/j.heliyon.2024.e39799_bib13) 2014; 7 Heyd (10.1016/j.heliyon.2024.e39799_bib47) 2003; 118 Valadares (10.1016/j.heliyon.2024.e39799_bib62) 2020; 124 Volonakis (10.1016/j.heliyon.2024.e39799_bib69) 2017; 8 Slavney (10.1016/j.heliyon.2024.e39799_bib68) 2016; 138 Durazzo (10.1016/j.heliyon.2024.e39799_bib55) Gidlow (10.1016/j.heliyon.2024.e39799_bib18) 2004; 54 Moskalyk (10.1016/j.heliyon.2024.e39799_bib26) 2004; 17 Islam (10.1016/j.heliyon.2024.e39799_bib32) 2022; 31 Shirayama (10.1016/j.heliyon.2024.e39799_bib5) 2016; 5 Perdew (10.1016/j.heliyon.2024.e39799_bib44) 1981; 23 Valenzano (10.1016/j.heliyon.2024.e39799_bib38) 2021; 2 Flora (10.1016/j.heliyon.2024.e39799_bib17) 2012; 5 Hao (10.1016/j.heliyon.2024.e39799_bib19) 2014; 8 Karthick (10.1016/j.heliyon.2024.e39799_bib31) 2020 Lan (10.1016/j.heliyon.2024.e39799_bib23) 2019; 177 Bhattarai (10.1016/j.heliyon.2024.e39799_bib9) 2020; 224 Alahnomi (10.1016/j.heliyon.2024.e39799_bib76) 2021; 21 Koh (10.1016/j.heliyon.2024.e39799_bib16) 2014; 118 Fu (10.1016/j.heliyon.2024.e39799_bib39) 2019; 193 Veldhuis (10.1016/j.heliyon.2024.e39799_bib4) 2016; 28 Wagner (10.1016/j.heliyon.2024.e39799_bib57) 2016; 93 Amat (10.1016/j.heliyon.2024.e39799_bib11) 2014; 14 Wang (10.1016/j.heliyon.2024.e39799_bib50) 2017; 26 Liu (10.1016/j.heliyon.2024.e39799_bib64) 2019; 123 Giannozzi (10.1016/j.heliyon.2024.e39799_bib45) 2009; 21 Islam (10.1016/j.heliyon.2024.e39799_bib34) 2022; 638 Hoefler (10.1016/j.heliyon.2024.e39799_bib36) 2017; 148 Kim (10.1016/j.heliyon.2024.e39799_bib53) 2018; 2 Islam (10.1016/j.heliyon.2024.e39799_bib33) 2022; 97 Xiang (10.1016/j.heliyon.2024.e39799_bib43) 2022; 354 Sani (10.1016/j.heliyon.2024.e39799_bib37) 2018; 11 Pang (10.1016/j.heliyon.2024.e39799_bib51) 2014; 26 Pellet (10.1016/j.heliyon.2024.e39799_bib12) 2014; 53 Sun (10.1016/j.heliyon.2024.e39799_bib21) 2016; 8 Wang (10.1016/j.heliyon.2024.e39799_bib10) 2021; 872 Kojima (10.1016/j.heliyon.2024.e39799_bib6) 2009; 131 Aldaghfag (10.1016/j.heliyon.2024.e39799_bib74) 2024; 19 Cheragee (10.1016/j.heliyon.2024.e39799_bib58) 2024; 801 Liu (10.1016/j.heliyon.2024.e39799_bib72) 2021; 60 10.1016/j.heliyon.2024.e39799_bib29 Gao (10.1016/j.heliyon.2024.e39799_bib42) 2018; 9 Karsch (10.1016/j.heliyon.2024.e39799_bib48) 1997; 401 Liu (10.1016/j.heliyon.2024.e39799_bib56) 2021; 12 Park (10.1016/j.heliyon.2024.e39799_bib1) 2015; 18 Islam (10.1016/j.heliyon.2024.e39799_bib35) 2022; 11 Kumar (10.1016/j.heliyon.2024.e39799_bib20) 2014; 26 El Arfaoui (10.1016/j.heliyon.2024.e39799_bib59) 2023; 13 Lyu (10.1016/j.heliyon.2024.e39799_bib2) 2017; 7 Keith (10.1016/j.heliyon.2024.e39799_bib25) 2014 Zheng (10.1016/j.heliyon.2024.e39799_bib60) 2024; 278 Ran (10.1016/j.heliyon.2024.e39799_bib71) 2022; 126 Han (10.1016/j.heliyon.2024.e39799_bib73) 2019; 62 Chen (10.1016/j.heliyon.2024.e39799_bib66) 2016; 4 Pachori (10.1016/j.heliyon.2024.e39799_bib40) 2021; 121 Yang (10.1016/j.heliyon.2024.e39799_bib70) 2018; 130 10.1016/j.heliyon.2024.e39799_bib15 Xuan (10.1016/j.heliyon.2024.e39799_bib63) 2020; 393 Jena (10.1016/j.heliyon.2024.e39799_bib41) 2019; 119 Lv (10.1016/j.heliyon.2024.e39799_bib8) 2014; 16 Perdew (10.1016/j.heliyon.2024.e39799_bib46) 1996 Hopfield (10.1016/j.heliyon.2024.e39799_bib75) 1958; 112 Zhou (10.1016/j.heliyon.2024.e39799_bib3) 2022; 911 Lee (10.1016/j.heliyon.2024.e39799_bib14) 2015; 5 Lu (10.1016/j.heliyon.2024.e39799_bib65) 2016; 6 Jank (10.1016/j.heliyon.2024.e39799_bib27) 1990; 8 Noel (10.1016/j.heliyon.2024.e39799_bib28) 2014; 7 Koh (10.1016/j.heliyon.2024.e39799_bib22) 2015; 3 Stoumpos (10.1016/j.heliyon.2024.e39799_bib61) 2015; 137 Zhang (10.1016/j.heliyon.2024.e39799_bib54) 2023; 15 Krishnamoorthy (10.1016/j.heliyon.2024.e39799_bib30) 2015; 3 Volonakis (10.1016/j.heliyon.2024.e39799_bib67) 2016; 7 RaeisianAsl (10.1016/j.heliyon.2024.e39799_bib52) 2022; 46 |
| References_xml | – volume: 5 year: 2016 ident: bib5 article-title: Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH publication-title: Phys. Rev. Appl. – volume: 123 start-page: 3795 year: 2019 end-page: 3800 ident: bib64 article-title: First-principles modeling of lead-free perovskites for photovoltaic applications publication-title: J. Phys. Chem. C – volume: 3 start-page: 14996 year: 2015 end-page: 15000 ident: bib22 article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications publication-title: J Mater Chem A Mater – volume: 46 start-page: 13117 year: 2022 end-page: 13151 ident: bib52 article-title: A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3 publication-title: Int. J. Energy Res. – volume: 130 start-page: 5457 year: 2018 end-page: 5461 ident: bib70 article-title: Lead‐free silver‐bismuth halide double perovskite nanocrystals publication-title: Angew. Chem. – volume: 5 start-page: 47 year: 2012 end-page: 58 ident: bib17 article-title: Toxicity of lead: a review with recent updates publication-title: Interdiscipl. Toxicol. – volume: 124 start-page: 18390 year: 2020 end-page: 18400 ident: bib62 article-title: Electronic structure panorama of halide perovskites: approximated DFT-1/2 quasiparticle and relativistic corrections publication-title: J. Phys. Chem. C – volume: 121 year: 2021 ident: bib40 article-title: Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH publication-title: Int J Quantum Chem – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: bib7 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science – volume: 60 start-page: 11592 year: 2021 end-page: 11603 ident: bib72 article-title: Lead-free double perovskite Cs publication-title: Angewandte Chemie - International Edition – volume: 137 start-page: 6804 year: 2015 end-page: 6819 ident: bib61 article-title: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 3151 year: 2014 end-page: 3157 ident: bib12 article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting publication-title: Angewandte Chemie - International Edition – volume: 19 start-page: 525 year: 2024 end-page: 538 ident: bib74 article-title: Investigation of AcXO publication-title: Dig. J. Nanomater. Biostruct. – volume: 7 start-page: 3061 year: 2014 end-page: 3068 ident: bib28 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. – volume: 401 year: 1997 ident: bib48 article-title: Screened perturbation theory publication-title: Phys. Lett. B – volume: 28 start-page: 6804 year: 2016 end-page: 6834 ident: bib4 article-title: Perovskite materials for light-emitting diodes and lasers publication-title: Adv. Mater. – volume: 7 start-page: 982 year: 2014 end-page: 988 ident: bib13 article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energy Environ. Sci. – volume: 26 year: 2017 ident: bib50 article-title: First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH publication-title: Chin. Phys. B – ident: bib55 – volume: 12 year: 2021 ident: bib56 article-title: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms publication-title: Front. Plant Sci. – volume: 26 start-page: 1485 year: 2014 end-page: 1491 ident: bib51 article-title: NH publication-title: Chem. Mater. – volume: 11 year: 2018 ident: bib37 article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review publication-title: Materials – volume: 112 start-page: 1555 year: 1958 ident: bib75 article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals publication-title: Phys. Rev. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bib6 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 86976 year: 2016 end-page: 86981 ident: bib65 article-title: First-principles insight into the photoelectronic properties of Ge-based perovskites publication-title: RSC Adv. – volume: 14 start-page: 3608 year: 2014 end-page: 3616 ident: bib11 article-title: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting publication-title: Nano Lett. – start-page: 799 year: 2014 end-page: 816 ident: bib25 article-title: Germanium publication-title: Handbook on the Toxicology of Metals – volume: 5 year: 2015 ident: bib14 article-title: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell publication-title: Adv. Energy Mater. – volume: 7 year: 2017 ident: bib2 article-title: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives publication-title: Adv. Energy Mater. – volume: 54 start-page: 76 year: 2004 end-page: 81 ident: bib18 article-title: Lead toxicity publication-title: Occup. Med. – volume: 9 start-page: 6999 year: 2018 end-page: 7006 ident: bib42 article-title: Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation publication-title: J. Phys. Chem. Lett. – volume: 13 year: 2023 ident: bib59 article-title: Efficient all lead-free perovskite solar cell simulation of FASnI publication-title: Results in Optics – volume: 119 start-page: 3036 year: 2019 end-page: 3103 ident: bib41 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem Rev – volume: 872 year: 2021 ident: bib10 article-title: Highly controllable synthesis of MAPbI publication-title: J. Alloys Compd. – reference: Yang, W. S. et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. – volume: 138 start-page: 2138 year: 2016 end-page: 2141 ident: bib68 article-title: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications publication-title: J. Am. Chem. Soc. – volume: 8 year: 1990 ident: bib27 article-title: Structural and electronic properties of the liquid polyvalent elements: the group-IV elements Si, Ge, Sn, and Pb publication-title: Phys. Rev. – volume: 801 start-page: 140432 year: 2024 ident: bib58 article-title: Numerical design of non-toxic high-efficiency tandem solar cell with distinct hole transport materials publication-title: Thin Solid Films – volume: 3 start-page: 23829 year: 2015 end-page: 23832 ident: bib30 article-title: Lead-free germanium iodide perovskite materials for photovoltaic applications publication-title: J Mater Chem A Mater – volume: 126 start-page: 6448 year: 2022 end-page: 6455 ident: bib71 article-title: Understanding of layer-dependent stability and rashba spin splitting of two-dimensional organic-inorganic halide perovskites α-FABX publication-title: J. Phys. Chem. C – volume: 11 year: 2022 ident: bib35 article-title: Strain-driven optical, electronic, and mechanical properties of inorganic halide perovskite CsGeBr publication-title: ECS Journal of Solid State Science and Technology – volume: 8 start-page: 772 year: 2017 end-page: 778 ident: bib69 article-title: Cs publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 393 year: 2004 end-page: 402 ident: bib26 article-title: Review of germanium processing worldwide publication-title: Miner. Eng. – volume: 97 year: 2022 ident: bib33 article-title: Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl publication-title: Phys. Scripta – volume: 393 year: 2020 ident: bib63 article-title: Recent processes on light-emitting lead-free metal halide perovskites publication-title: Chem. Eng. J. – volume: 193 start-page: 107 year: 2019 end-page: 132 ident: bib39 article-title: Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells publication-title: Sol. Energy Mater. Sol. Cell. – volume: 31 year: 2022 ident: bib32 article-title: Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr publication-title: Mater. Today Commun. – volume: 62 start-page: 1405 year: 2019 end-page: 1413 ident: bib73 article-title: Size effect of lead-free halide double perovskite on luminescence property publication-title: Sci China Chem – year: 2024 ident: bib49 article-title: Spin–Orbit coupling effect bandgaps engineering of the lead-free perovskites FABI publication-title: Phys Status Solidi B Basic Res – volume: 278 year: 2024 ident: bib60 article-title: Optical characteristics and precipitation behavior of organic halide perovskites with component regulation publication-title: Sol. Energy – volume: 8 start-page: 489 year: 2014 end-page: 494 ident: bib19 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photonics – year: 2020 ident: bib31 article-title: Mechanical stability study of BULK FAXM publication-title: 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2020 – volume: 8 start-page: 1503 year: 2016 end-page: 1512 ident: bib21 article-title: Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb publication-title: Nanoscale – volume: 26 start-page: 7122 year: 2014 end-page: 7127 ident: bib20 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. – volume: 354 year: 2022 ident: bib43 article-title: Strain-induced enhancement of carrier transport and optical absorption in Cs3Bi2Br9 perovskite publication-title: Solid State Commun. – volume: 2 year: 2021 ident: bib38 article-title: Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks publication-title: Cell Rep Phys Sci – volume: 177 start-page: 501 year: 2019 end-page: 507 ident: bib23 article-title: Lead-free formamidinium bismuth perovskites (FA) publication-title: Sol. Energy – volume: 21 year: 2009 ident: bib45 article-title: Quantum espresso: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter – volume: 224 year: 2020 ident: bib9 article-title: Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI publication-title: Optik – volume: 638 year: 2022 ident: bib34 article-title: Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI publication-title: Physica B Condens Matter – reference: Zhu, T. Pérovskites Hybrides et Ingénierie d’interface Pour l’amélioration Des Dispositifs Optoélectroniques. – volume: 93 start-page: 1289 year: 2016 end-page: 1298 ident: bib57 article-title: Investigating bandgap energies, materials, and design of light-emitting diodes publication-title: J Chem Educ – volume: 911 year: 2022 ident: bib3 article-title: A brief review on metal halide perovskite photocatalysts: history, applications and prospects publication-title: J. Alloys Compd. – volume: 118 start-page: 16458 year: 2014 end-page: 16462 ident: bib16 article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells publication-title: J. Phys. Chem. C – reference: . – volume: 7 start-page: 1254 year: 2016 end-page: 1259 ident: bib67 article-title: Lead-free halide double perovskites via heterovalent substitution of noble metals publication-title: J. Phys. Chem. Lett. – volume: 148 start-page: 795 year: 2017 end-page: 826 ident: bib36 article-title: Progress on lead-free metal halide perovskites for photovoltaic applications: a review publication-title: Monatshefte fur Chemie – volume: 18 start-page: 65 year: 2015 end-page: 72 ident: bib1 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today – volume: 21 year: 2021 ident: bib76 article-title: Review of recent microwave planar resonator-based sensors: techniques of complex permittivity extraction, applications, open challenges and future research directions publication-title: Sensors – volume: 169 year: 2019 ident: bib24 article-title: Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics publication-title: Comput. Mater. Sci. – volume: 23 start-page: 5048 year: 1981 ident: bib44 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Physical Review B – volume: 16 start-page: 19206 year: 2014 end-page: 19211 ident: bib8 article-title: One-step, solution-processed formamidinium lead trihalide (FAPbI publication-title: Phys. Chem. Chem. Phys. – year: 1996 ident: bib46 article-title: Generalized Gradient Approximation Made Simple – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: bib47 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. – volume: 4 start-page: 11 year: 2016 end-page: 27 ident: bib66 article-title: Crystal organometal halide perovskites with promising optoelectronic applications publication-title: J Mater Chem C Mater – volume: 2 year: 2018 ident: bib53 article-title: Halide perovskites for applications beyond photovoltaics publication-title: Small Methods – volume: 15 year: 2023 ident: bib54 article-title: Advances in the application of perovskite materials publication-title: Nano-Micro Lett. – volume: 8 start-page: 489 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib19 article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.82 – volume: 278 year: 2024 ident: 10.1016/j.heliyon.2024.e39799_bib60 article-title: Optical characteristics and precipitation behavior of organic halide perovskites with component regulation publication-title: Sol. Energy doi: 10.1016/j.solener.2024.112783 – volume: 123 start-page: 3795 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib64 article-title: First-principles modeling of lead-free perovskites for photovoltaic applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11695 – volume: 177 start-page: 501 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib23 article-title: Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application publication-title: Sol. Energy doi: 10.1016/j.solener.2018.11.050 – volume: 4 start-page: 11 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib66 article-title: Crystal organometal halide perovskites with promising optoelectronic applications publication-title: J Mater Chem C Mater doi: 10.1039/C5TC03417E – volume: 17 start-page: 393 year: 2004 ident: 10.1016/j.heliyon.2024.e39799_bib26 article-title: Review of germanium processing worldwide publication-title: Miner. Eng. doi: 10.1016/j.mineng.2003.11.014 – volume: 3 start-page: 14996 year: 2015 ident: 10.1016/j.heliyon.2024.e39799_bib22 article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications publication-title: J Mater Chem A Mater doi: 10.1039/C5TA00190K – start-page: 799 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib25 article-title: Germanium – volume: 12 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib56 article-title: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms publication-title: Front. Plant Sci. – volume: 21 year: 2009 ident: 10.1016/j.heliyon.2024.e39799_bib45 article-title: Quantum espresso: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 7 start-page: 1254 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib67 article-title: Lead-free halide double perovskites via heterovalent substitution of noble metals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00376 – volume: 62 start-page: 1405 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib73 article-title: Size effect of lead-free halide double perovskite on luminescence property publication-title: Sci China Chem doi: 10.1007/s11426-019-9520-1 – volume: 21 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib76 article-title: Review of recent microwave planar resonator-based sensors: techniques of complex permittivity extraction, applications, open challenges and future research directions publication-title: Sensors doi: 10.3390/s21072267 – volume: 8 start-page: 1503 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib21 article-title: Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+ publication-title: Nanoscale doi: 10.1039/C5NR05337D – volume: 148 start-page: 795 year: 2017 ident: 10.1016/j.heliyon.2024.e39799_bib36 article-title: Progress on lead-free metal halide perovskites for photovoltaic applications: a review publication-title: Monatshefte fur Chemie doi: 10.1007/s00706-017-1933-9 – volume: 801 start-page: 140432 year: 2024 ident: 10.1016/j.heliyon.2024.e39799_bib58 article-title: Numerical design of non-toxic high-efficiency tandem solar cell with distinct hole transport materials publication-title: Thin Solid Films doi: 10.1016/j.tsf.2024.140432 – volume: 7 year: 2017 ident: 10.1016/j.heliyon.2024.e39799_bib2 article-title: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602512 – volume: 401 year: 1997 ident: 10.1016/j.heliyon.2024.e39799_bib48 article-title: Screened perturbation theory publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(97)00392-4 – volume: 11 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib35 article-title: Strain-driven optical, electronic, and mechanical properties of inorganic halide perovskite CsGeBr 3 publication-title: ECS Journal of Solid State Science and Technology doi: 10.1149/2162-8777/ac56c2 – volume: 53 start-page: 3151 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib12 article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting publication-title: Angewandte Chemie - International Edition doi: 10.1002/anie.201309361 – volume: 16 start-page: 19206 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib8 article-title: One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Clx) for mesoscopic perovskite-polymer solar cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02113D – year: 2020 ident: 10.1016/j.heliyon.2024.e39799_bib31 article-title: Mechanical stability study of BULK FAXM3Perovskites – volume: 5 start-page: 47 year: 2012 ident: 10.1016/j.heliyon.2024.e39799_bib17 article-title: Toxicity of lead: a review with recent updates publication-title: Interdiscipl. Toxicol. doi: 10.2478/v10102-012-0009-2 – volume: 93 start-page: 1289 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib57 article-title: Investigating bandgap energies, materials, and design of light-emitting diodes publication-title: J Chem Educ doi: 10.1021/acs.jchemed.6b00165 – volume: 138 start-page: 2138 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib68 article-title: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13294 – volume: 26 start-page: 7122 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib20 article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation publication-title: Adv. Mater. doi: 10.1002/adma.201401991 – volume: 638 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib34 article-title: Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A= Rb and Cs) publication-title: Physica B Condens Matter doi: 10.1016/j.physb.2022.413960 – volume: 126 start-page: 6448 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib71 article-title: Understanding of layer-dependent stability and rashba spin splitting of two-dimensional organic-inorganic halide perovskites α-FABX3(B = Ge, Sn, and Pb; X = Cl, Br, and I) publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c00558 – volume: 8 year: 1990 ident: 10.1016/j.heliyon.2024.e39799_bib27 article-title: Structural and electronic properties of the liquid polyvalent elements: the group-IV elements Si, Ge, Sn, and Pb publication-title: Phys. Rev. – ident: 10.1016/j.heliyon.2024.e39799_bib15 – volume: 118 start-page: 16458 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib16 article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp411112k – volume: 3 start-page: 23829 year: 2015 ident: 10.1016/j.heliyon.2024.e39799_bib30 article-title: Lead-free germanium iodide perovskite materials for photovoltaic applications publication-title: J Mater Chem A Mater doi: 10.1039/C5TA05741H – volume: 911 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib3 article-title: A brief review on metal halide perovskite photocatalysts: history, applications and prospects publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165062 – volume: 13 year: 2023 ident: 10.1016/j.heliyon.2024.e39799_bib59 article-title: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation publication-title: Results in Optics doi: 10.1016/j.rio.2023.100554 – volume: 872 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib10 article-title: Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159589 – volume: 54 start-page: 76 year: 2004 ident: 10.1016/j.heliyon.2024.e39799_bib18 article-title: Lead toxicity publication-title: Occup. Med. doi: 10.1093/occmed/kqh019 – volume: 169 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib24 article-title: Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.109118 – volume: 338 start-page: 643 year: 2012 ident: 10.1016/j.heliyon.2024.e39799_bib7 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science doi: 10.1126/science.1228604 – volume: 124 start-page: 18390 year: 2020 ident: 10.1016/j.heliyon.2024.e39799_bib62 article-title: Electronic structure panorama of halide perovskites: approximated DFT-1/2 quasiparticle and relativistic corrections publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c03672 – volume: 97 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib33 article-title: Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl3-nBrn(n = 0, 1, 2, and 3) through altering the halide ratio publication-title: Phys. Scripta doi: 10.1088/1402-4896/ac6e9a – volume: 18 start-page: 65 year: 2015 ident: 10.1016/j.heliyon.2024.e39799_bib1 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today doi: 10.1016/j.mattod.2014.07.007 – volume: 2 year: 2018 ident: 10.1016/j.heliyon.2024.e39799_bib53 article-title: Halide perovskites for applications beyond photovoltaics publication-title: Small Methods doi: 10.1002/smtd.201700310 – volume: 7 start-page: 3061 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib28 article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01076K – ident: 10.1016/j.heliyon.2024.e39799_bib29 – volume: 118 start-page: 8207 year: 2003 ident: 10.1016/j.heliyon.2024.e39799_bib47 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 60 start-page: 11592 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib72 article-title: Lead-free double perovskite Cs2AgInCl6 publication-title: Angewandte Chemie - International Edition doi: 10.1002/anie.202011833 – volume: 28 start-page: 6804 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib4 article-title: Perovskite materials for light-emitting diodes and lasers publication-title: Adv. Mater. doi: 10.1002/adma.201600669 – volume: 224 year: 2020 ident: 10.1016/j.heliyon.2024.e39799_bib9 article-title: Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer publication-title: Optik doi: 10.1016/j.ijleo.2020.165430 – year: 1996 ident: 10.1016/j.heliyon.2024.e39799_bib46 – year: 2024 ident: 10.1016/j.heliyon.2024.e39799_bib49 article-title: Spin–Orbit coupling effect bandgaps engineering of the lead-free perovskites FABI3 (B = Sn or Ge) materials for tandem solar cells: first principle investigation of structural and electronic properties publication-title: Phys Status Solidi B Basic Res doi: 10.1002/pssb.202400217 – volume: 6 start-page: 86976 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib65 article-title: First-principles insight into the photoelectronic properties of Ge-based perovskites publication-title: RSC Adv. doi: 10.1039/C6RA18534G – volume: 119 start-page: 3036 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib41 article-title: Halide perovskite photovoltaics: background, status, and future prospects publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00539 – volume: 121 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib40 article-title: Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH2)2PbX3; X = Br, Cl]: recent advances and perspectives publication-title: Int J Quantum Chem doi: 10.1002/qua.26671 – volume: 5 year: 2016 ident: 10.1016/j.heliyon.2024.e39799_bib5 article-title: Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.014012 – volume: 31 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib32 article-title: Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A= Rb and Cs) publication-title: Mater. Today Commun. – volume: 7 start-page: 982 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib13 article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 354 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib43 article-title: Strain-induced enhancement of carrier transport and optical absorption in Cs3Bi2Br9 perovskite publication-title: Solid State Commun. doi: 10.1016/j.ssc.2022.114918 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.heliyon.2024.e39799_bib6 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 26 year: 2017 ident: 10.1016/j.heliyon.2024.e39799_bib50 article-title: First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH2)2PbI3 publication-title: Chin. Phys. B – volume: 393 year: 2020 ident: 10.1016/j.heliyon.2024.e39799_bib63 article-title: Recent processes on light-emitting lead-free metal halide perovskites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124757 – ident: 10.1016/j.heliyon.2024.e39799_bib55 – volume: 11 year: 2018 ident: 10.1016/j.heliyon.2024.e39799_bib37 article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review publication-title: Materials doi: 10.3390/ma11061008 – volume: 2 year: 2021 ident: 10.1016/j.heliyon.2024.e39799_bib38 article-title: Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks publication-title: Cell Rep Phys Sci – volume: 137 start-page: 6804 year: 2015 ident: 10.1016/j.heliyon.2024.e39799_bib61 article-title: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01025 – volume: 14 start-page: 3608 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib11 article-title: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting publication-title: Nano Lett. doi: 10.1021/nl5012992 – volume: 19 start-page: 525 year: 2024 ident: 10.1016/j.heliyon.2024.e39799_bib74 article-title: Investigation of AcXO3 (X = Al, Ga) perovskites for energy harvesting applications: a DFT approach publication-title: Dig. J. Nanomater. Biostruct. doi: 10.15251/DJNB.2024.192.525 – volume: 9 start-page: 6999 issue: 24 year: 2018 ident: 10.1016/j.heliyon.2024.e39799_bib42 article-title: Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03194 – volume: 193 start-page: 107 year: 2019 ident: 10.1016/j.heliyon.2024.e39799_bib39 article-title: Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.12.038 – volume: 26 start-page: 1485 year: 2014 ident: 10.1016/j.heliyon.2024.e39799_bib51 article-title: NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells publication-title: Chem. Mater. doi: 10.1021/cm404006p – volume: 46 start-page: 13117 issue: 10 year: 2022 ident: 10.1016/j.heliyon.2024.e39799_bib52 article-title: A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3 publication-title: Int. J. Energy Res. doi: 10.1002/er.8008 – volume: 15 year: 2023 ident: 10.1016/j.heliyon.2024.e39799_bib54 article-title: Advances in the application of perovskite materials publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01140-3 – volume: 8 start-page: 772 year: 2017 ident: 10.1016/j.heliyon.2024.e39799_bib69 article-title: Cs 2 InAgCl 6 : a new lead-free halide double perovskite with direct band gap publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02682 – volume: 130 start-page: 5457 year: 2018 ident: 10.1016/j.heliyon.2024.e39799_bib70 article-title: Lead‐free silver‐bismuth halide double perovskite nanocrystals publication-title: Angew. Chem. doi: 10.1002/ange.201800660 – volume: 5 year: 2015 ident: 10.1016/j.heliyon.2024.e39799_bib14 article-title: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501310 – volume: 112 start-page: 1555 issue: 5 year: 1958 ident: 10.1016/j.heliyon.2024.e39799_bib75 article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.112.1555 – volume: 23 start-page: 5048 issue: 10 year: 1981 ident: 10.1016/j.heliyon.2024.e39799_bib44 article-title: Self-interaction correction to density-functional approximations for many-electron systems publication-title: Physical Review B doi: 10.1103/PhysRevB.23.5048 |
| SSID | ssj0001586973 |
| Score | 2.320637 |
| Snippet | This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the... This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX₃), where X represents the... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e39799 |
| SubjectTerms | absorbance Biaxial strain bromine chlorine compression strength Density functional theory (DFT) dielectric properties Electronic properties energy Formamidinium germanium iodine Optical properties Perovskite refractive index tensile strength wavelengths |
| Title | Strain effect on the electronic and optical characteristics of FAGeX3 (X=Cl, Br, and I) perovskite materials: DFT analysis |
| URI | https://dx.doi.org/10.1016/j.heliyon.2024.e39799 https://www.proquest.com/docview/3128751950 https://www.proquest.com/docview/3154178382 https://pubmed.ncbi.nlm.nih.gov/PMC11550038 https://doaj.org/article/beb077dcc95a455d84ecf72a73278c7f |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLKi-xtFRG4gBSs038iG0kDm3pAodWSBQpN2vs2OpWq6TabSu1h_527Djbbi7shUsOjp3YM2P7sz3-BqGPOfVlTi3NgFGTsQKKDIjwGVE5MWCAGOK7YBPi5ERWlfq1Euor-oQleuAkuD3jTC5Eba3iwDivJXPWCwKCEiGt8HH0zYVaWUyl-8GyVII-XNnZOx-fudn0po2cp4SNXXeeNZiMOs7-wZy0gjmHHpMrU9BkEz3vsSPeT3V-gR655iV6etyfjr9Ct7-7gA84-WjgtsEB3eGHQDcYmhq3F93uNbZDpmbcejzZ_-4qij9VXw9nu_hgvtsV-PkZRzLx60Xc58UB4Cab_YK_TU5DhsRp8hr9mRydHv7I-tgKmWVcqcwH2EXDOE0BSiutl0HAhXAgRFCcMgpETevSsLqklAMFboAxayJ64yVzOX2DNpq2cW8RthRK4DUHIyjzJZFF5MCrvZCcFblUI8SWQta2Jx6P4pjppYfZue51o6NudNLNCI3vi10k5o11BQ6iBu8zR-LsLiGYk-7NSa8zpxGSS_3rHoMkbBE-NV33_w9Le9Ghj8aDF2hce7XQNIAAEWl88n_lCdISkkoSqjAwtkGDhm-a6VnHCF7EhWZO5bv_IYIt9Cy2Kl64LPg22ricX7n36Im9vpwu5jvosajkTtfbwvP47ugvAU8y0A |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+effect+on+the+electronic+and+optical+characteristics+of+FAGeX3+%28X%3DCl%2C+Br%2C+and+I%29+perovskite+materials%3A+DFT+analysis&rft.jtitle=Heliyon&rft.au=Md.+Mahfuzul+Haque&rft.au=Md.+Amanullah&rft.au=Md.+Roman+Mia&rft.au=Md.+Rasidul+Islam&rft.date=2024-11-15&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=10&rft.issue=21&rft.spage=e39799&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e39799&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |