Strain effect on the electronic and optical characteristics of FAGeX3 (X=Cl, Br, and I) perovskite materials: DFT analysis

This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon Jg. 10; H. 21; S. e39799
Hauptverfasser: Haque, Md. Mahfuzul, Amanullah, Md, Mia, Md. Roman, Islam, Md. Rasidul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.11.2024
Elsevier
Schlagworte:
ISSN:2405-8440, 2405-8440
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.
AbstractList This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.
This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the -6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the -6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.
This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX₃), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl₃ showing the highest bandgap (2.1359 eV), followed by FAGeBr₃ (1.7325 eV), and FAGeI₃ with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX₃ perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.
ArticleNumber e39799
Author Haque, Md. Mahfuzul
Amanullah, Md
Mia, Md. Roman
Islam, Md. Rasidul
Author_xml – sequence: 1
  givenname: Md. Mahfuzul
  orcidid: 0000-0003-2769-2265
  surname: Haque
  fullname: Haque, Md. Mahfuzul
  email: mahfuz.eee@bsfmstu.ac.bd, md.mhshuvo@gmail.com
– sequence: 2
  givenname: Md
  surname: Amanullah
  fullname: Amanullah, Md
– sequence: 3
  givenname: Md. Roman
  surname: Mia
  fullname: Mia, Md. Roman
– sequence: 4
  givenname: Md. Rasidul
  surname: Islam
  fullname: Islam, Md. Rasidul
BookMark eNqNksFuEzEQhleoSJTSR0DysUhNsNf22gtCqKRNiVSJA0XqzZr1zjYOzjq1N5HC0-M0EaJcysn2eP7PM-P_dXHUhx6L4i2jY0ZZ9X4xnqN329CPS1qKMfJa1fWL4rgUVI60EPTor_2r4jSlBaWUSV3Vih8Xv74PEVxPsOvQDiT0ZJgjQZ8PMfTOEuhbElaDs-CJnUMEO2B0KQcSCR2ZXlzjHSdnd58m_px8ieePgtk7ssIYNumnG5AsYScBnz6Qy-ltTgC_TS69KV52OYinh_Wk-DG9up18Hd18u55NLm5GVsi6HnVlWXFsGAeorLadtrZmCkEpbnnd1KBa3laNaCvOJXCQDQhhG1ZxLSuBlJ8Usz23DbAwq-iWELcmgDOPgRDvDcTcj0fTYEOVavMLEoSUrRZoO1WC4qXSVnWZ9XnPWq2bJbYW-zw-_wT69KZ3c3MfNoYxKSnlOhPODoQYHtaYBrN0yaL30GNYJ8OZFExprsv_SC21kqyWux7lPtXGkFLE7k9JjJqdT8zCHHxidj4xe59k3cd_dNYNMLiwq975Z9WHaWD-vo3DaJJ12FtsXcwGyvN1zxB-A8Yz3-o
CitedBy_id crossref_primary_10_1016_j_matchemphys_2025_131241
crossref_primary_10_1002_pssa_202500200
crossref_primary_10_1016_j_micrna_2025_208150
crossref_primary_10_1016_j_optcom_2025_131873
Cites_doi 10.1038/nphoton.2014.82
10.1016/j.solener.2024.112783
10.1021/acs.jpcc.8b11695
10.1016/j.solener.2018.11.050
10.1039/C5TC03417E
10.1016/j.mineng.2003.11.014
10.1039/C5TA00190K
10.1088/0953-8984/21/39/395502
10.1021/acs.jpclett.6b00376
10.1007/s11426-019-9520-1
10.3390/s21072267
10.1039/C5NR05337D
10.1007/s00706-017-1933-9
10.1016/j.tsf.2024.140432
10.1002/aenm.201602512
10.1016/S0370-2693(97)00392-4
10.1149/2162-8777/ac56c2
10.1002/anie.201309361
10.1039/C4CP02113D
10.2478/v10102-012-0009-2
10.1021/acs.jchemed.6b00165
10.1021/jacs.5b13294
10.1002/adma.201401991
10.1016/j.physb.2022.413960
10.1021/acs.jpcc.2c00558
10.1021/jp411112k
10.1039/C5TA05741H
10.1016/j.jallcom.2022.165062
10.1016/j.rio.2023.100554
10.1016/j.jallcom.2021.159589
10.1093/occmed/kqh019
10.1016/j.commatsci.2019.109118
10.1126/science.1228604
10.1021/acs.jpcc.0c03672
10.1088/1402-4896/ac6e9a
10.1016/j.mattod.2014.07.007
10.1002/smtd.201700310
10.1039/C4EE01076K
10.1063/1.1564060
10.1002/anie.202011833
10.1002/adma.201600669
10.1016/j.ijleo.2020.165430
10.1002/pssb.202400217
10.1039/C6RA18534G
10.1021/acs.chemrev.8b00539
10.1002/qua.26671
10.1103/PhysRevApplied.5.014012
10.1039/c3ee43822h
10.1016/j.ssc.2022.114918
10.1021/ja809598r
10.1016/j.cej.2020.124757
10.3390/ma11061008
10.1021/jacs.5b01025
10.1021/nl5012992
10.15251/DJNB.2024.192.525
10.1021/acs.jpclett.8b03194
10.1016/j.solmat.2018.12.038
10.1021/cm404006p
10.1002/er.8008
10.1007/s40820-023-01140-3
10.1021/acs.jpclett.6b02682
10.1002/ange.201800660
10.1002/aenm.201501310
10.1103/PhysRev.112.1555
10.1103/PhysRevB.23.5048
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e39799
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f
PMC11550038
10_1016_j_heliyon_2024_e39799
S2405844024158306
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4599-f2263eb13aa6c8cf8cc917ea773c39b9a7d3d6b4d6335a3a5ba44cb1638564e03
IEDL.DBID DOA
ISSN 2405-8440
IngestDate Fri Oct 03 12:50:56 EDT 2025
Tue Sep 30 17:07:06 EDT 2025
Fri Aug 22 20:19:44 EDT 2025
Fri Jul 11 10:28:40 EDT 2025
Thu Nov 20 00:57:06 EST 2025
Tue Nov 18 21:32:24 EST 2025
Sat Nov 29 17:03:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Perovskite
Formamidinium
Electronic properties
Optical properties
Density functional theory (DFT)
Biaxial strain
Language English
License This is an open access article under the CC BY-NC license.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4599-f2263eb13aa6c8cf8cc917ea773c39b9a7d3d6b4d6335a3a5ba44cb1638564e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2769-2265
OpenAccessLink https://doaj.org/article/beb077dcc95a455d84ecf72a73278c7f
PQID 3128751950
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11550038
proquest_miscellaneous_3154178382
proquest_miscellaneous_3128751950
crossref_primary_10_1016_j_heliyon_2024_e39799
crossref_citationtrail_10_1016_j_heliyon_2024_e39799
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e39799
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Koh (bib16) 2014; 118
Krishnamoorthy (bib30) 2015; 3
Aldaghfag, Ishfaq, Nasarullah & Yaseen (bib74) 2024; 19
Hopfield (bib75) 1958; 112
Lee (bib14) 2015; 5
Xuan, Xie (bib63) 2020; 393
Alahnomi (bib76) 2021; 21
Moskalyk (bib26) 2004; 17
Islam (bib35) 2022; 11
Valadares, Guilhon, Teles, Marques (bib62) 2020; 124
Pachori, Agarwal, Shukla, Rani, Verma (bib40) 2021; 121
Kumar (bib20) 2014; 26
Keith, Faroon, Maples-Reynolds, Fowler (bib25) 2014
Islam (bib32) 2022; 31
Lu (bib65) 2016; 6
Noel (bib28) 2014; 7
Perdew, Burke, Ernzerhof (bib46) 1996
Perdew, Zunger (bib44) 1981; 23
RaeisianAsl, Panahi, Jamaati, Tafreshi (bib52) 2022; 46
Volonakis (bib67) 2016; 7
El Arfaoui, Khenfouch, Habiballah (bib49) 2024
Zheng (bib60) 2024; 278
Lan (bib23) 2019; 177
Ran, Xiong, Zhong, Yuan (bib71) 2022; 126
.
Islam, Moghal, Moshwan (bib33) 2022; 97
Valenzano (bib38) 2021; 2
Zhang (bib54) 2023; 15
Jank, Hafner (bib27) 1990; 8
Cheragee, Akhi, Dev, Haque, Alam (bib58) 2024; 801
Slavney, Hu, Lindenberg, Karunadasa (bib68) 2016; 138
Hoefler, Trimmel, Rath (bib36) 2017; 148
Heyd, Scuseria, Ernzerhof (bib47) 2003; 118
Wagner (bib57) 2016; 93
Eperon (bib13) 2014; 7
Liu, van Iersel (bib56) 2021; 12
Yang, W. S. et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells.
Karsch, Patkas, Petreczlq (bib48) 1997; 401
Pang (bib51) 2014; 26
Wang (bib10) 2021; 872
Stoumpos (bib61) 2015; 137
Han (bib73) 2019; 62
Shirayama (bib5) 2016; 5
Hao, Stoumpos, Cao, Chang, Kanatzidis (bib19) 2014; 8
Kojima, Teshima, Shirai, Miyasaka (bib6) 2009; 131
Chen, Zhou, Jin, Li, Zhai (bib66) 2016; 4
Liu, Li, Jing, Wu (bib64) 2019; 123
Roknuzzaman (bib24) 2019; 169
Yang (bib70) 2018; 130
Xiang (bib43) 2022; 354
Zhu, T. Pérovskites Hybrides et Ingénierie d’interface Pour l’amélioration Des Dispositifs Optoélectroniques.
Giannozzi (bib45) 2009; 21
Karthick, Rios-Ramirez, Velumani (bib31) 2020
Koh (bib22) 2015; 3
Wang, Fu, Wang (bib50) 2017; 26
Lv (bib8) 2014; 16
Volonakis (bib69) 2017; 8
Kim, Han, Choi, Kim, Jang (bib53) 2018; 2
El Arfaoui, Khenfouch, Habiballah (bib59) 2023; 13
Pellet (bib12) 2014; 53
Fu (bib39) 2019; 193
Park (bib1) 2015; 18
Flora, Gupta, Tiwari (bib17) 2012; 5
Jena, Kulkarni, Miyasaka (bib41) 2019; 119
Veldhuis (bib4) 2016; 28
Sun, Li, Yang, Li (bib21) 2016; 8
Bhattarai, Sharma, Das (bib9) 2020; 224
Lyu, Yun, Chen, Hao, Wang (bib2) 2017; 7
Zhou (bib3) 2022; 911
Gidlow (bib18) 2004; 54
Lee, Teuscher, Miyasaka, Murakami, Snaith (bib7) 2012; 338
Amat (bib11) 2014; 14
Islam (bib34) 2022; 638
Liu, Nag, Manna, Xia (bib72) 2021; 60
Sani, Shafie, Lim, Musa (bib37) 2018; 11
Gao, Ran, Li, Dong, Jiao, Zhang, Lan, Hou, Wu (bib42) 2018; 9
Durazzo, Durazzo (bib55)
El Arfaoui (10.1016/j.heliyon.2024.e39799_bib49) 2024
Lee (10.1016/j.heliyon.2024.e39799_bib7) 2012; 338
Roknuzzaman (10.1016/j.heliyon.2024.e39799_bib24) 2019; 169
Eperon (10.1016/j.heliyon.2024.e39799_bib13) 2014; 7
Heyd (10.1016/j.heliyon.2024.e39799_bib47) 2003; 118
Valadares (10.1016/j.heliyon.2024.e39799_bib62) 2020; 124
Volonakis (10.1016/j.heliyon.2024.e39799_bib69) 2017; 8
Slavney (10.1016/j.heliyon.2024.e39799_bib68) 2016; 138
Durazzo (10.1016/j.heliyon.2024.e39799_bib55)
Gidlow (10.1016/j.heliyon.2024.e39799_bib18) 2004; 54
Moskalyk (10.1016/j.heliyon.2024.e39799_bib26) 2004; 17
Islam (10.1016/j.heliyon.2024.e39799_bib32) 2022; 31
Shirayama (10.1016/j.heliyon.2024.e39799_bib5) 2016; 5
Perdew (10.1016/j.heliyon.2024.e39799_bib44) 1981; 23
Valenzano (10.1016/j.heliyon.2024.e39799_bib38) 2021; 2
Flora (10.1016/j.heliyon.2024.e39799_bib17) 2012; 5
Hao (10.1016/j.heliyon.2024.e39799_bib19) 2014; 8
Karthick (10.1016/j.heliyon.2024.e39799_bib31) 2020
Lan (10.1016/j.heliyon.2024.e39799_bib23) 2019; 177
Bhattarai (10.1016/j.heliyon.2024.e39799_bib9) 2020; 224
Alahnomi (10.1016/j.heliyon.2024.e39799_bib76) 2021; 21
Koh (10.1016/j.heliyon.2024.e39799_bib16) 2014; 118
Fu (10.1016/j.heliyon.2024.e39799_bib39) 2019; 193
Veldhuis (10.1016/j.heliyon.2024.e39799_bib4) 2016; 28
Wagner (10.1016/j.heliyon.2024.e39799_bib57) 2016; 93
Amat (10.1016/j.heliyon.2024.e39799_bib11) 2014; 14
Wang (10.1016/j.heliyon.2024.e39799_bib50) 2017; 26
Liu (10.1016/j.heliyon.2024.e39799_bib64) 2019; 123
Giannozzi (10.1016/j.heliyon.2024.e39799_bib45) 2009; 21
Islam (10.1016/j.heliyon.2024.e39799_bib34) 2022; 638
Hoefler (10.1016/j.heliyon.2024.e39799_bib36) 2017; 148
Kim (10.1016/j.heliyon.2024.e39799_bib53) 2018; 2
Islam (10.1016/j.heliyon.2024.e39799_bib33) 2022; 97
Xiang (10.1016/j.heliyon.2024.e39799_bib43) 2022; 354
Sani (10.1016/j.heliyon.2024.e39799_bib37) 2018; 11
Pang (10.1016/j.heliyon.2024.e39799_bib51) 2014; 26
Pellet (10.1016/j.heliyon.2024.e39799_bib12) 2014; 53
Sun (10.1016/j.heliyon.2024.e39799_bib21) 2016; 8
Wang (10.1016/j.heliyon.2024.e39799_bib10) 2021; 872
Kojima (10.1016/j.heliyon.2024.e39799_bib6) 2009; 131
Aldaghfag (10.1016/j.heliyon.2024.e39799_bib74) 2024; 19
Cheragee (10.1016/j.heliyon.2024.e39799_bib58) 2024; 801
Liu (10.1016/j.heliyon.2024.e39799_bib72) 2021; 60
10.1016/j.heliyon.2024.e39799_bib29
Gao (10.1016/j.heliyon.2024.e39799_bib42) 2018; 9
Karsch (10.1016/j.heliyon.2024.e39799_bib48) 1997; 401
Liu (10.1016/j.heliyon.2024.e39799_bib56) 2021; 12
Park (10.1016/j.heliyon.2024.e39799_bib1) 2015; 18
Islam (10.1016/j.heliyon.2024.e39799_bib35) 2022; 11
Kumar (10.1016/j.heliyon.2024.e39799_bib20) 2014; 26
El Arfaoui (10.1016/j.heliyon.2024.e39799_bib59) 2023; 13
Lyu (10.1016/j.heliyon.2024.e39799_bib2) 2017; 7
Keith (10.1016/j.heliyon.2024.e39799_bib25) 2014
Zheng (10.1016/j.heliyon.2024.e39799_bib60) 2024; 278
Ran (10.1016/j.heliyon.2024.e39799_bib71) 2022; 126
Han (10.1016/j.heliyon.2024.e39799_bib73) 2019; 62
Chen (10.1016/j.heliyon.2024.e39799_bib66) 2016; 4
Pachori (10.1016/j.heliyon.2024.e39799_bib40) 2021; 121
Yang (10.1016/j.heliyon.2024.e39799_bib70) 2018; 130
10.1016/j.heliyon.2024.e39799_bib15
Xuan (10.1016/j.heliyon.2024.e39799_bib63) 2020; 393
Jena (10.1016/j.heliyon.2024.e39799_bib41) 2019; 119
Lv (10.1016/j.heliyon.2024.e39799_bib8) 2014; 16
Perdew (10.1016/j.heliyon.2024.e39799_bib46) 1996
Hopfield (10.1016/j.heliyon.2024.e39799_bib75) 1958; 112
Zhou (10.1016/j.heliyon.2024.e39799_bib3) 2022; 911
Lee (10.1016/j.heliyon.2024.e39799_bib14) 2015; 5
Lu (10.1016/j.heliyon.2024.e39799_bib65) 2016; 6
Jank (10.1016/j.heliyon.2024.e39799_bib27) 1990; 8
Noel (10.1016/j.heliyon.2024.e39799_bib28) 2014; 7
Koh (10.1016/j.heliyon.2024.e39799_bib22) 2015; 3
Stoumpos (10.1016/j.heliyon.2024.e39799_bib61) 2015; 137
Zhang (10.1016/j.heliyon.2024.e39799_bib54) 2023; 15
Krishnamoorthy (10.1016/j.heliyon.2024.e39799_bib30) 2015; 3
Volonakis (10.1016/j.heliyon.2024.e39799_bib67) 2016; 7
RaeisianAsl (10.1016/j.heliyon.2024.e39799_bib52) 2022; 46
References_xml – volume: 5
  year: 2016
  ident: bib5
  article-title: Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH
  publication-title: Phys. Rev. Appl.
– volume: 123
  start-page: 3795
  year: 2019
  end-page: 3800
  ident: bib64
  article-title: First-principles modeling of lead-free perovskites for photovoltaic applications
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 14996
  year: 2015
  end-page: 15000
  ident: bib22
  article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications
  publication-title: J Mater Chem A Mater
– volume: 46
  start-page: 13117
  year: 2022
  end-page: 13151
  ident: bib52
  article-title: A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3
  publication-title: Int. J. Energy Res.
– volume: 130
  start-page: 5457
  year: 2018
  end-page: 5461
  ident: bib70
  article-title: Lead‐free silver‐bismuth halide double perovskite nanocrystals
  publication-title: Angew. Chem.
– volume: 5
  start-page: 47
  year: 2012
  end-page: 58
  ident: bib17
  article-title: Toxicity of lead: a review with recent updates
  publication-title: Interdiscipl. Toxicol.
– volume: 124
  start-page: 18390
  year: 2020
  end-page: 18400
  ident: bib62
  article-title: Electronic structure panorama of halide perovskites: approximated DFT-1/2 quasiparticle and relativistic corrections
  publication-title: J. Phys. Chem. C
– volume: 121
  year: 2021
  ident: bib40
  article-title: Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH
  publication-title: Int J Quantum Chem
– volume: 338
  start-page: 643
  year: 2012
  end-page: 647
  ident: bib7
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
– volume: 60
  start-page: 11592
  year: 2021
  end-page: 11603
  ident: bib72
  article-title: Lead-free double perovskite Cs
  publication-title: Angewandte Chemie - International Edition
– volume: 137
  start-page: 6804
  year: 2015
  end-page: 6819
  ident: bib61
  article-title: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 3151
  year: 2014
  end-page: 3157
  ident: bib12
  article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting
  publication-title: Angewandte Chemie - International Edition
– volume: 19
  start-page: 525
  year: 2024
  end-page: 538
  ident: bib74
  article-title: Investigation of AcXO
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 7
  start-page: 3061
  year: 2014
  end-page: 3068
  ident: bib28
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
– volume: 401
  year: 1997
  ident: bib48
  article-title: Screened perturbation theory
  publication-title: Phys. Lett. B
– volume: 28
  start-page: 6804
  year: 2016
  end-page: 6834
  ident: bib4
  article-title: Perovskite materials for light-emitting diodes and lasers
  publication-title: Adv. Mater.
– volume: 7
  start-page: 982
  year: 2014
  end-page: 988
  ident: bib13
  article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
  publication-title: Energy Environ. Sci.
– volume: 26
  year: 2017
  ident: bib50
  article-title: First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH
  publication-title: Chin. Phys. B
– ident: bib55
– volume: 12
  year: 2021
  ident: bib56
  article-title: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms
  publication-title: Front. Plant Sci.
– volume: 26
  start-page: 1485
  year: 2014
  end-page: 1491
  ident: bib51
  article-title: NH
  publication-title: Chem. Mater.
– volume: 11
  year: 2018
  ident: bib37
  article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review
  publication-title: Materials
– volume: 112
  start-page: 1555
  year: 1958
  ident: bib75
  article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals
  publication-title: Phys. Rev.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bib6
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 86976
  year: 2016
  end-page: 86981
  ident: bib65
  article-title: First-principles insight into the photoelectronic properties of Ge-based perovskites
  publication-title: RSC Adv.
– volume: 14
  start-page: 3608
  year: 2014
  end-page: 3616
  ident: bib11
  article-title: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting
  publication-title: Nano Lett.
– start-page: 799
  year: 2014
  end-page: 816
  ident: bib25
  article-title: Germanium
  publication-title: Handbook on the Toxicology of Metals
– volume: 5
  year: 2015
  ident: bib14
  article-title: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  ident: bib2
  article-title: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 76
  year: 2004
  end-page: 81
  ident: bib18
  article-title: Lead toxicity
  publication-title: Occup. Med.
– volume: 9
  start-page: 6999
  year: 2018
  end-page: 7006
  ident: bib42
  article-title: Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation
  publication-title: J. Phys. Chem. Lett.
– volume: 13
  year: 2023
  ident: bib59
  article-title: Efficient all lead-free perovskite solar cell simulation of FASnI
  publication-title: Results in Optics
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  ident: bib41
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem Rev
– volume: 872
  year: 2021
  ident: bib10
  article-title: Highly controllable synthesis of MAPbI
  publication-title: J. Alloys Compd.
– reference: Yang, W. S. et al. Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells.
– volume: 138
  start-page: 2138
  year: 2016
  end-page: 2141
  ident: bib68
  article-title: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 1990
  ident: bib27
  article-title: Structural and electronic properties of the liquid polyvalent elements: the group-IV elements Si, Ge, Sn, and Pb
  publication-title: Phys. Rev.
– volume: 801
  start-page: 140432
  year: 2024
  ident: bib58
  article-title: Numerical design of non-toxic high-efficiency tandem solar cell with distinct hole transport materials
  publication-title: Thin Solid Films
– volume: 3
  start-page: 23829
  year: 2015
  end-page: 23832
  ident: bib30
  article-title: Lead-free germanium iodide perovskite materials for photovoltaic applications
  publication-title: J Mater Chem A Mater
– volume: 126
  start-page: 6448
  year: 2022
  end-page: 6455
  ident: bib71
  article-title: Understanding of layer-dependent stability and rashba spin splitting of two-dimensional organic-inorganic halide perovskites α-FABX
  publication-title: J. Phys. Chem. C
– volume: 11
  year: 2022
  ident: bib35
  article-title: Strain-driven optical, electronic, and mechanical properties of inorganic halide perovskite CsGeBr
  publication-title: ECS Journal of Solid State Science and Technology
– volume: 8
  start-page: 772
  year: 2017
  end-page: 778
  ident: bib69
  article-title: Cs
  publication-title: J. Phys. Chem. Lett.
– volume: 17
  start-page: 393
  year: 2004
  end-page: 402
  ident: bib26
  article-title: Review of germanium processing worldwide
  publication-title: Miner. Eng.
– volume: 97
  year: 2022
  ident: bib33
  article-title: Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl
  publication-title: Phys. Scripta
– volume: 393
  year: 2020
  ident: bib63
  article-title: Recent processes on light-emitting lead-free metal halide perovskites
  publication-title: Chem. Eng. J.
– volume: 193
  start-page: 107
  year: 2019
  end-page: 132
  ident: bib39
  article-title: Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 31
  year: 2022
  ident: bib32
  article-title: Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr
  publication-title: Mater. Today Commun.
– volume: 62
  start-page: 1405
  year: 2019
  end-page: 1413
  ident: bib73
  article-title: Size effect of lead-free halide double perovskite on luminescence property
  publication-title: Sci China Chem
– year: 2024
  ident: bib49
  article-title: Spin–Orbit coupling effect bandgaps engineering of the lead-free perovskites FABI
  publication-title: Phys Status Solidi B Basic Res
– volume: 278
  year: 2024
  ident: bib60
  article-title: Optical characteristics and precipitation behavior of organic halide perovskites with component regulation
  publication-title: Sol. Energy
– volume: 8
  start-page: 489
  year: 2014
  end-page: 494
  ident: bib19
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photonics
– year: 2020
  ident: bib31
  article-title: Mechanical stability study of BULK FAXM
  publication-title: 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2020
– volume: 8
  start-page: 1503
  year: 2016
  end-page: 1512
  ident: bib21
  article-title: Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb
  publication-title: Nanoscale
– volume: 26
  start-page: 7122
  year: 2014
  end-page: 7127
  ident: bib20
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
– volume: 354
  year: 2022
  ident: bib43
  article-title: Strain-induced enhancement of carrier transport and optical absorption in Cs3Bi2Br9 perovskite
  publication-title: Solid State Commun.
– volume: 2
  year: 2021
  ident: bib38
  article-title: Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks
  publication-title: Cell Rep Phys Sci
– volume: 177
  start-page: 501
  year: 2019
  end-page: 507
  ident: bib23
  article-title: Lead-free formamidinium bismuth perovskites (FA)
  publication-title: Sol. Energy
– volume: 21
  year: 2009
  ident: bib45
  article-title: Quantum espresso: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
– volume: 224
  year: 2020
  ident: bib9
  article-title: Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI
  publication-title: Optik
– volume: 638
  year: 2022
  ident: bib34
  article-title: Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI
  publication-title: Physica B Condens Matter
– reference: Zhu, T. Pérovskites Hybrides et Ingénierie d’interface Pour l’amélioration Des Dispositifs Optoélectroniques.
– volume: 93
  start-page: 1289
  year: 2016
  end-page: 1298
  ident: bib57
  article-title: Investigating bandgap energies, materials, and design of light-emitting diodes
  publication-title: J Chem Educ
– volume: 911
  year: 2022
  ident: bib3
  article-title: A brief review on metal halide perovskite photocatalysts: history, applications and prospects
  publication-title: J. Alloys Compd.
– volume: 118
  start-page: 16458
  year: 2014
  end-page: 16462
  ident: bib16
  article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells
  publication-title: J. Phys. Chem. C
– reference: .
– volume: 7
  start-page: 1254
  year: 2016
  end-page: 1259
  ident: bib67
  article-title: Lead-free halide double perovskites via heterovalent substitution of noble metals
  publication-title: J. Phys. Chem. Lett.
– volume: 148
  start-page: 795
  year: 2017
  end-page: 826
  ident: bib36
  article-title: Progress on lead-free metal halide perovskites for photovoltaic applications: a review
  publication-title: Monatshefte fur Chemie
– volume: 18
  start-page: 65
  year: 2015
  end-page: 72
  ident: bib1
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
– volume: 21
  year: 2021
  ident: bib76
  article-title: Review of recent microwave planar resonator-based sensors: techniques of complex permittivity extraction, applications, open challenges and future research directions
  publication-title: Sensors
– volume: 169
  year: 2019
  ident: bib24
  article-title: Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics
  publication-title: Comput. Mater. Sci.
– volume: 23
  start-page: 5048
  year: 1981
  ident: bib44
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Physical Review B
– volume: 16
  start-page: 19206
  year: 2014
  end-page: 19211
  ident: bib8
  article-title: One-step, solution-processed formamidinium lead trihalide (FAPbI
  publication-title: Phys. Chem. Chem. Phys.
– year: 1996
  ident: bib46
  article-title: Generalized Gradient Approximation Made Simple
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  ident: bib47
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 11
  year: 2016
  end-page: 27
  ident: bib66
  article-title: Crystal organometal halide perovskites with promising optoelectronic applications
  publication-title: J Mater Chem C Mater
– volume: 2
  year: 2018
  ident: bib53
  article-title: Halide perovskites for applications beyond photovoltaics
  publication-title: Small Methods
– volume: 15
  year: 2023
  ident: bib54
  article-title: Advances in the application of perovskite materials
  publication-title: Nano-Micro Lett.
– volume: 8
  start-page: 489
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib19
  article-title: Lead-free solid-state organic-inorganic halide perovskite solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.82
– volume: 278
  year: 2024
  ident: 10.1016/j.heliyon.2024.e39799_bib60
  article-title: Optical characteristics and precipitation behavior of organic halide perovskites with component regulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2024.112783
– volume: 123
  start-page: 3795
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib64
  article-title: First-principles modeling of lead-free perovskites for photovoltaic applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11695
– volume: 177
  start-page: 501
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib23
  article-title: Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.11.050
– volume: 4
  start-page: 11
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib66
  article-title: Crystal organometal halide perovskites with promising optoelectronic applications
  publication-title: J Mater Chem C Mater
  doi: 10.1039/C5TC03417E
– volume: 17
  start-page: 393
  year: 2004
  ident: 10.1016/j.heliyon.2024.e39799_bib26
  article-title: Review of germanium processing worldwide
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2003.11.014
– volume: 3
  start-page: 14996
  year: 2015
  ident: 10.1016/j.heliyon.2024.e39799_bib22
  article-title: Formamidinium tin-based perovskite with low Eg for photovoltaic applications
  publication-title: J Mater Chem A Mater
  doi: 10.1039/C5TA00190K
– start-page: 799
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib25
  article-title: Germanium
– volume: 12
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib56
  article-title: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms
  publication-title: Front. Plant Sci.
– volume: 21
  year: 2009
  ident: 10.1016/j.heliyon.2024.e39799_bib45
  article-title: Quantum espresso: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 7
  start-page: 1254
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib67
  article-title: Lead-free halide double perovskites via heterovalent substitution of noble metals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00376
– volume: 62
  start-page: 1405
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib73
  article-title: Size effect of lead-free halide double perovskite on luminescence property
  publication-title: Sci China Chem
  doi: 10.1007/s11426-019-9520-1
– volume: 21
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib76
  article-title: Review of recent microwave planar resonator-based sensors: techniques of complex permittivity extraction, applications, open challenges and future research directions
  publication-title: Sensors
  doi: 10.3390/s21072267
– volume: 8
  start-page: 1503
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib21
  article-title: Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+
  publication-title: Nanoscale
  doi: 10.1039/C5NR05337D
– volume: 148
  start-page: 795
  year: 2017
  ident: 10.1016/j.heliyon.2024.e39799_bib36
  article-title: Progress on lead-free metal halide perovskites for photovoltaic applications: a review
  publication-title: Monatshefte fur Chemie
  doi: 10.1007/s00706-017-1933-9
– volume: 801
  start-page: 140432
  year: 2024
  ident: 10.1016/j.heliyon.2024.e39799_bib58
  article-title: Numerical design of non-toxic high-efficiency tandem solar cell with distinct hole transport materials
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2024.140432
– volume: 7
  year: 2017
  ident: 10.1016/j.heliyon.2024.e39799_bib2
  article-title: Addressing toxicity of lead: progress and applications of low-toxic metal halide perovskites and their derivatives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602512
– volume: 401
  year: 1997
  ident: 10.1016/j.heliyon.2024.e39799_bib48
  article-title: Screened perturbation theory
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(97)00392-4
– volume: 11
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib35
  article-title: Strain-driven optical, electronic, and mechanical properties of inorganic halide perovskite CsGeBr 3
  publication-title: ECS Journal of Solid State Science and Technology
  doi: 10.1149/2162-8777/ac56c2
– volume: 53
  start-page: 3151
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib12
  article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting
  publication-title: Angewandte Chemie - International Edition
  doi: 10.1002/anie.201309361
– volume: 16
  start-page: 19206
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib8
  article-title: One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x)Clx) for mesoscopic perovskite-polymer solar cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02113D
– year: 2020
  ident: 10.1016/j.heliyon.2024.e39799_bib31
  article-title: Mechanical stability study of BULK FAXM3Perovskites
– volume: 5
  start-page: 47
  year: 2012
  ident: 10.1016/j.heliyon.2024.e39799_bib17
  article-title: Toxicity of lead: a review with recent updates
  publication-title: Interdiscipl. Toxicol.
  doi: 10.2478/v10102-012-0009-2
– volume: 93
  start-page: 1289
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib57
  article-title: Investigating bandgap energies, materials, and design of light-emitting diodes
  publication-title: J Chem Educ
  doi: 10.1021/acs.jchemed.6b00165
– volume: 138
  start-page: 2138
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib68
  article-title: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13294
– volume: 26
  start-page: 7122
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib20
  article-title: Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401991
– volume: 638
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib34
  article-title: Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A= Rb and Cs)
  publication-title: Physica B Condens Matter
  doi: 10.1016/j.physb.2022.413960
– volume: 126
  start-page: 6448
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib71
  article-title: Understanding of layer-dependent stability and rashba spin splitting of two-dimensional organic-inorganic halide perovskites α-FABX3(B = Ge, Sn, and Pb; X = Cl, Br, and I)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c00558
– volume: 8
  year: 1990
  ident: 10.1016/j.heliyon.2024.e39799_bib27
  article-title: Structural and electronic properties of the liquid polyvalent elements: the group-IV elements Si, Ge, Sn, and Pb
  publication-title: Phys. Rev.
– ident: 10.1016/j.heliyon.2024.e39799_bib15
– volume: 118
  start-page: 16458
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib16
  article-title: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp411112k
– volume: 3
  start-page: 23829
  year: 2015
  ident: 10.1016/j.heliyon.2024.e39799_bib30
  article-title: Lead-free germanium iodide perovskite materials for photovoltaic applications
  publication-title: J Mater Chem A Mater
  doi: 10.1039/C5TA05741H
– volume: 911
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib3
  article-title: A brief review on metal halide perovskite photocatalysts: history, applications and prospects
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165062
– volume: 13
  year: 2023
  ident: 10.1016/j.heliyon.2024.e39799_bib59
  article-title: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation
  publication-title: Results in Optics
  doi: 10.1016/j.rio.2023.100554
– volume: 872
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib10
  article-title: Highly controllable synthesis of MAPbI3 perovskite nanocrystals with long carrier lifetimes and narrow band gap for application in photodetectors
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159589
– volume: 54
  start-page: 76
  year: 2004
  ident: 10.1016/j.heliyon.2024.e39799_bib18
  article-title: Lead toxicity
  publication-title: Occup. Med.
  doi: 10.1093/occmed/kqh019
– volume: 169
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib24
  article-title: Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronics
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.109118
– volume: 338
  start-page: 643
  year: 2012
  ident: 10.1016/j.heliyon.2024.e39799_bib7
  article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites
  publication-title: Science
  doi: 10.1126/science.1228604
– volume: 124
  start-page: 18390
  year: 2020
  ident: 10.1016/j.heliyon.2024.e39799_bib62
  article-title: Electronic structure panorama of halide perovskites: approximated DFT-1/2 quasiparticle and relativistic corrections
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c03672
– volume: 97
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib33
  article-title: Tuning the electronic, optical, and thermal properties of cubic perovskites CsPbCl3-nBrn(n = 0, 1, 2, and 3) through altering the halide ratio
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ac6e9a
– volume: 18
  start-page: 65
  year: 2015
  ident: 10.1016/j.heliyon.2024.e39799_bib1
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.07.007
– volume: 2
  year: 2018
  ident: 10.1016/j.heliyon.2024.e39799_bib53
  article-title: Halide perovskites for applications beyond photovoltaics
  publication-title: Small Methods
  doi: 10.1002/smtd.201700310
– volume: 7
  start-page: 3061
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib28
  article-title: Lead-free organic-inorganic tin halide perovskites for photovoltaic applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01076K
– ident: 10.1016/j.heliyon.2024.e39799_bib29
– volume: 118
  start-page: 8207
  year: 2003
  ident: 10.1016/j.heliyon.2024.e39799_bib47
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 60
  start-page: 11592
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib72
  article-title: Lead-free double perovskite Cs2AgInCl6
  publication-title: Angewandte Chemie - International Edition
  doi: 10.1002/anie.202011833
– volume: 28
  start-page: 6804
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib4
  article-title: Perovskite materials for light-emitting diodes and lasers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600669
– volume: 224
  year: 2020
  ident: 10.1016/j.heliyon.2024.e39799_bib9
  article-title: Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165430
– year: 1996
  ident: 10.1016/j.heliyon.2024.e39799_bib46
– year: 2024
  ident: 10.1016/j.heliyon.2024.e39799_bib49
  article-title: Spin–Orbit coupling effect bandgaps engineering of the lead-free perovskites FABI3 (B = Sn or Ge) materials for tandem solar cells: first principle investigation of structural and electronic properties
  publication-title: Phys Status Solidi B Basic Res
  doi: 10.1002/pssb.202400217
– volume: 6
  start-page: 86976
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib65
  article-title: First-principles insight into the photoelectronic properties of Ge-based perovskites
  publication-title: RSC Adv.
  doi: 10.1039/C6RA18534G
– volume: 119
  start-page: 3036
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib41
  article-title: Halide perovskite photovoltaics: background, status, and future prospects
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00539
– volume: 121
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib40
  article-title: Mechanically stable with highly absorptive formamidinium lead halide perovskites [(HC(NH2)2PbX3; X = Br, Cl]: recent advances and perspectives
  publication-title: Int J Quantum Chem
  doi: 10.1002/qua.26671
– volume: 5
  year: 2016
  ident: 10.1016/j.heliyon.2024.e39799_bib5
  article-title: Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.014012
– volume: 31
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib32
  article-title: Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr3 (A= Rb and Cs)
  publication-title: Mater. Today Commun.
– volume: 7
  start-page: 982
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib13
  article-title: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 354
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib43
  article-title: Strain-induced enhancement of carrier transport and optical absorption in Cs3Bi2Br9 perovskite
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2022.114918
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.heliyon.2024.e39799_bib6
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 26
  year: 2017
  ident: 10.1016/j.heliyon.2024.e39799_bib50
  article-title: First-principles analysis of the structural, electronic, and elastic properties of cubic organic-inorganic perovskite HC(NH2)2PbI3
  publication-title: Chin. Phys. B
– volume: 393
  year: 2020
  ident: 10.1016/j.heliyon.2024.e39799_bib63
  article-title: Recent processes on light-emitting lead-free metal halide perovskites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124757
– ident: 10.1016/j.heliyon.2024.e39799_bib55
– volume: 11
  year: 2018
  ident: 10.1016/j.heliyon.2024.e39799_bib37
  article-title: Advancement on lead-free organic-inorganic halide perovskite solar cells: a review
  publication-title: Materials
  doi: 10.3390/ma11061008
– volume: 2
  year: 2021
  ident: 10.1016/j.heliyon.2024.e39799_bib38
  article-title: Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks
  publication-title: Cell Rep Phys Sci
– volume: 137
  start-page: 6804
  year: 2015
  ident: 10.1016/j.heliyon.2024.e39799_bib61
  article-title: Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01025
– volume: 14
  start-page: 3608
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib11
  article-title: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting
  publication-title: Nano Lett.
  doi: 10.1021/nl5012992
– volume: 19
  start-page: 525
  year: 2024
  ident: 10.1016/j.heliyon.2024.e39799_bib74
  article-title: Investigation of AcXO3 (X = Al, Ga) perovskites for energy harvesting applications: a DFT approach
  publication-title: Dig. J. Nanomater. Biostruct.
  doi: 10.15251/DJNB.2024.192.525
– volume: 9
  start-page: 6999
  issue: 24
  year: 2018
  ident: 10.1016/j.heliyon.2024.e39799_bib42
  article-title: Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03194
– volume: 193
  start-page: 107
  year: 2019
  ident: 10.1016/j.heliyon.2024.e39799_bib39
  article-title: Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2018.12.038
– volume: 26
  start-page: 1485
  year: 2014
  ident: 10.1016/j.heliyon.2024.e39799_bib51
  article-title: NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells
  publication-title: Chem. Mater.
  doi: 10.1021/cm404006p
– volume: 46
  start-page: 13117
  issue: 10
  year: 2022
  ident: 10.1016/j.heliyon.2024.e39799_bib52
  article-title: A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8008
– volume: 15
  year: 2023
  ident: 10.1016/j.heliyon.2024.e39799_bib54
  article-title: Advances in the application of perovskite materials
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01140-3
– volume: 8
  start-page: 772
  year: 2017
  ident: 10.1016/j.heliyon.2024.e39799_bib69
  article-title: Cs 2 InAgCl 6 : a new lead-free halide double perovskite with direct band gap
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02682
– volume: 130
  start-page: 5457
  year: 2018
  ident: 10.1016/j.heliyon.2024.e39799_bib70
  article-title: Lead‐free silver‐bismuth halide double perovskite nanocrystals
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201800660
– volume: 5
  year: 2015
  ident: 10.1016/j.heliyon.2024.e39799_bib14
  article-title: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501310
– volume: 112
  start-page: 1555
  issue: 5
  year: 1958
  ident: 10.1016/j.heliyon.2024.e39799_bib75
  article-title: Theory of the contribution of excitons to the complex dielectric constant of crystals
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.1555
– volume: 23
  start-page: 5048
  issue: 10
  year: 1981
  ident: 10.1016/j.heliyon.2024.e39799_bib44
  article-title: Self-interaction correction to density-functional approximations for many-electron systems
  publication-title: Physical Review B
  doi: 10.1103/PhysRevB.23.5048
SSID ssj0001586973
Score 2.320637
Snippet This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the...
This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX₃), where X represents the...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e39799
SubjectTerms absorbance
Biaxial strain
bromine
chlorine
compression strength
Density functional theory (DFT)
dielectric properties
Electronic properties
energy
Formamidinium
germanium
iodine
Optical properties
Perovskite
refractive index
tensile strength
wavelengths
Title Strain effect on the electronic and optical characteristics of FAGeX3 (X=Cl, Br, and I) perovskite materials: DFT analysis
URI https://dx.doi.org/10.1016/j.heliyon.2024.e39799
https://www.proquest.com/docview/3128751950
https://www.proquest.com/docview/3154178382
https://pubmed.ncbi.nlm.nih.gov/PMC11550038
https://doaj.org/article/beb077dcc95a455d84ecf72a73278c7f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogLKi-xtFRG4gBSs038iG0kDm3pAodWSBQpN2vs2OpWq6TabSu1h_527Djbbi7shUsOjp3YM2P7sz3-BqGPOfVlTi3NgFGTsQKKDIjwGVE5MWCAGOK7YBPi5ERWlfq1Euor-oQleuAkuD3jTC5Eba3iwDivJXPWCwKCEiGt8HH0zYVaWUyl-8GyVII-XNnZOx-fudn0po2cp4SNXXeeNZiMOs7-wZy0gjmHHpMrU9BkEz3vsSPeT3V-gR655iV6etyfjr9Ct7-7gA84-WjgtsEB3eGHQDcYmhq3F93uNbZDpmbcejzZ_-4qij9VXw9nu_hgvtsV-PkZRzLx60Xc58UB4Cab_YK_TU5DhsRp8hr9mRydHv7I-tgKmWVcqcwH2EXDOE0BSiutl0HAhXAgRFCcMgpETevSsLqklAMFboAxayJ64yVzOX2DNpq2cW8RthRK4DUHIyjzJZFF5MCrvZCcFblUI8SWQta2Jx6P4pjppYfZue51o6NudNLNCI3vi10k5o11BQ6iBu8zR-LsLiGYk-7NSa8zpxGSS_3rHoMkbBE-NV33_w9Le9Ghj8aDF2hce7XQNIAAEWl88n_lCdISkkoSqjAwtkGDhm-a6VnHCF7EhWZO5bv_IYIt9Cy2Kl64LPg22ricX7n36Im9vpwu5jvosajkTtfbwvP47ugvAU8y0A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+effect+on+the+electronic+and+optical+characteristics+of+FAGeX3+%28X%3DCl%2C+Br%2C+and+I%29+perovskite+materials%3A+DFT+analysis&rft.jtitle=Heliyon&rft.au=Md.+Mahfuzul+Haque&rft.au=Md.+Amanullah&rft.au=Md.+Roman+Mia&rft.au=Md.+Rasidul+Islam&rft.date=2024-11-15&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=10&rft.issue=21&rft.spage=e39799&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e39799&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_beb077dcc95a455d84ecf72a73278c7f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon