Strain effect on the electronic and optical characteristics of FAGeX3 (X=Cl, Br, and I) perovskite materials: DFT analysis

This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 10; no. 21; p. e39799
Main Authors: Haque, Md. Mahfuzul, Amanullah, Md, Mia, Md. Roman, Islam, Md. Rasidul
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.11.2024
Elsevier
Subjects:
ISSN:2405-8440, 2405-8440
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the electronic and optical properties of a perovskite material known as Formamidinium Germanium Halide (FAGeX3), where X represents the elements Chlorine (Cl), Bromine (Br), and Iodine (I). We explore the bandgap, density of state (DOS), and partial density of state (PDOS) to understand their electronic properties. We use two methods, PBE and HSE-06, to determine the bandgap. Further, we investigate the optical properties by investigating the real and imaginary functions of the dielectric constant, refractive index, electron energy loss function, and absorption coefficient. Our research extends to the impact of biaxial strain, both tensile and compressive, in the −6% to +6 % range. Without strain, the materials exhibit direct bandgaps at the R point, with FAGeCl3 showing the highest bandgap (2.1359 eV), followed by FAGeBr3 (1.7325 eV), and FAGeI3 with the lowest (1.2581 eV). Our results reveal that applying tensile strain increases the bandgap and induces a blueshift, shifting the optical responses to shorter wavelengths, while compressive strain reduces the bandgap and causes a redshift, enhancing longer wavelength responses. Our findings demonstrate that FAGeX3 perovskites exhibit highly tunable electronic and optical properties under strain, making them exceptional candidates for advanced optoelectronic applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e39799