Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI
Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published meth...
Saved in:
| Published in: | Bioelectromagnetics Vol. 30; no. 6; pp. 489 - 499 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2009
|
| Subjects: | |
| ISSN: | 0197-8462, 1521-186X, 1521-186X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 X 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489-499, 2009. Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid.Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid. Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm 2 . Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm 2 . Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc. Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid. Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc. |
| Author | Iriguchi, Norio Ohsaki, Hiroyuki Sekino, Masaki Yamaguchi-Sekino, Sachiko Ueno, Shoogo |
| Author_xml | – sequence: 1 givenname: Masaki surname: Sekino fullname: Sekino, Masaki email: sekino@k.u-tokyo.ac.jp organization: Department of Advanced Energy, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Hiroyuki surname: Ohsaki fullname: Ohsaki, Hiroyuki organization: Department of Advanced Energy, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan – sequence: 3 givenname: Sachiko surname: Yamaguchi-Sekino fullname: Yamaguchi-Sekino, Sachiko organization: Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan – sequence: 4 givenname: Norio surname: Iriguchi fullname: Iriguchi, Norio organization: Center for Multimedia and Information Technologies, Kumamoto University, Kumamoto, Japan – sequence: 5 givenname: Shoogo surname: Ueno fullname: Ueno, Shoogo organization: Department of Applied Quantum Physics, Graduate School of Engineering, Kyushu University, Fukuoka, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19437459$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhi1URLeFA38A-QTikHZsx3FyhKoslbZ8VCC4WY4zlgxJXGyHsv8ew257QMDJl-d5xzPvETmYw4yEPGZwwgD4aY_TCQcJ8h5ZMclZxdrm8wFZAetU1dYNPyRHKX0BgLYF8YAcsq4Wqpbdilxtwk3lIn5bcLZbasM8LDb77z5vacY5hUiDo9Fk2kfjZ5p9Sgsm6meHMeJAXQwTHbxzS_JhppdXFw_JfWfGhI_27zH5-Or8w9nravN2fXH2YlPZMllWRtSdxa4bpLNOtj2g6i1DBQ5sr5gDxY1UHByHlovaucFZUC1y2yCTVohj8myXex1D-X7KevLJ4jiaGcOStKobkG1TN4V8-l-yUVJI0bECPtmDSz_hoK-jn0zc6tt7FeB0B9gYUorotPXZ5LJ5LucZNQP9qxFdGtG_GynG8z-Mu9C_sPv0Gz_i9t-gfnl-eWtUO8OnjD_uDBO_lqWEkvrTm7V-9x4Er9dcS_ETQpapNQ |
| CitedBy_id | crossref_primary_10_1002_bem_20714 crossref_primary_10_1016_j_matcom_2017_11_006 crossref_primary_10_1371_journal_pone_0197063 crossref_primary_10_1098_rsos_220552 crossref_primary_10_1016_j_apm_2019_05_002 crossref_primary_10_1038_s41598_023_30344_1 crossref_primary_10_1088_0031_9155_59_12_2955 crossref_primary_10_1186_s12885_017_3159_y crossref_primary_10_1029_2020RS007152 crossref_primary_10_1109_TMAG_2011_2171925 crossref_primary_10_1016_j_jneumeth_2010_11_024 crossref_primary_10_1063_1_4928652 crossref_primary_10_1016_j_neuroimage_2020_117466 crossref_primary_10_1063_1_4973818 crossref_primary_10_1016_j_matcom_2017_01_004 crossref_primary_10_1002_bem_20611 |
| Cites_doi | 10.1002/mrm.10118 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A 10.1190/1.1441215 10.1063/1.367599 10.21236/ADA303903 10.1016/0167-2738(94)90323-9 10.1088/0031-9155/27/4/002 10.1002/mrm.10685 10.1006/jmrb.1996.0086 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1152/ajplegacy.1963.205.1.203 10.1002/nbm.1940070115 10.1109/TBME.2008.923159 10.1088/0967-3334/27/5/S08 10.1137/0111030 10.1016/0014-4886(65)90126-3 10.1111/j.1749-6632.1997.tb46192.x 10.1002/jmri.1107 10.1063/1.373579 10.1006/jmre.1998.1673 10.1016/S0927-7757(01)00689-6 10.1109/79.962276 10.1016/0014-4886(69)90149-6 10.1126/science.161.3843.784 10.1016/S0014-4886(63)80005-9 10.1109/TMAG.2005.854804 10.1007/BF02474537 10.1038/380509a0 10.1088/0967-3334/25/1/038 10.1063/1.1454987 10.1021/jp020510a 10.1002/mrm.10301 10.1002/mrm.10682 10.1002/jcp.1030450305 10.1109/10.121646 10.1002/mrm.1910290123 10.1063/1.368377 10.1007/s10548-006-0006-x 10.1016/0006-8993(79)90918-1 10.1002/mrm.1910370117 10.1109/20.800775 10.1109/10.605429 10.1063/1.1544446 10.1002/mrm.1910360607 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 Wiley‐Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2009 Wiley‐Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
| DOI | 10.1002/bem.20505 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology Biology |
| EISSN | 1521-186X |
| EndPage | 499 |
| ExternalDocumentID | 19437459 10_1002_bem_20505 BEM20505 ark_67375_WNG_PQ0324G2_5 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology, Japan – fundername: Gran‐in‐Aid for Young Scientists(A) funderid: 18680037 – fundername: Grant‐in‐Aid for Scientific Research(s) funderid: 17100006 |
| GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI WRC WSB AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7TK |
| ID | FETCH-LOGICAL-c4595-a349ce99d5fcf58b0e7bc1e70f0cb71f072a5720f208234ffdfc078e2c6e15c33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269141800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0197-8462 1521-186X |
| IngestDate | Fri Jul 11 16:14:51 EDT 2025 Sun Nov 09 09:22:25 EST 2025 Mon Jul 21 05:38:58 EDT 2025 Tue Nov 18 21:49:04 EST 2025 Sat Nov 29 05:30:00 EST 2025 Wed Jan 22 17:10:38 EST 2025 Tue Sep 09 05:29:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4595-a349ce99d5fcf58b0e7bc1e70f0cb71f072a5720f208234ffdfc078e2c6e15c33 |
| Notes | Gran-in-Aid for Young Scientists(A) - No. 18680037 ArticleID:BEM20505 istex:0F7DF5D43D75118BCAD948B7E5E376F40909E183 ark:/67375/WNG-PQ0324G2-5 Ministry of Education, Culture, Sports, Science and Technology, Japan Grant-in-Aid for Scientific Research(s) - No. 17100006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19437459 |
| PQID | 67535391 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_746058646 proquest_miscellaneous_67535391 pubmed_primary_19437459 crossref_citationtrail_10_1002_bem_20505 crossref_primary_10_1002_bem_20505 wiley_primary_10_1002_bem_20505_BEM20505 istex_primary_ark_67375_WNG_PQ0324G2_5 |
| PublicationCentury | 2000 |
| PublicationDate | September 2009 |
| PublicationDateYYYYMMDD | 2009-09-01 |
| PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Bioelectromagnetics |
| PublicationTitleAlternate | Bioelectromagnetics |
| PublicationYear | 2009 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Geddes LA, Baker LE. 1967. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5: 271-293. Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. 1997. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44: 727-735. Kataoka H, Eguchi T, Masui H, Miyakubo K, Nakayama H, Nakamura N. 2003. Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2-ethylhexyl) sulfosuccinate-based microemulsion. J Phys Chem B 107: 12542-12548. Niendorf T, Dijkhuisen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996. Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging. Magn Reson Med 36: 847-857. Butson CR, Cooper SE, Henderson JM, McIntyre CC. 2006. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9: 429-437. Zhou H, van Oosterom A. 1992. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor. IEEE Trans Biomed Eng 39: 154-158. Lu SY. 1998. Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. J Appl Phys 84: 2647-2655. Paxinos G, Watson C. 1998. The rat brain. San Diego: Academic Press. Sekino M, Ueno S. 2002. Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. J Appl Phys 91: 8730-8732. Freygang WH, Jr., Landau WM. 1955. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol 45: 377-392. Atkins PW. 1998. Physical chemistry. Oxford: Oxford University Press. Merboldt KD, Hörstermann D, Hänicke W, Bruhn H, Frahm J. 1993. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29: 125-129. van Harreveld A, Murphy A, Nobel KW. 1963. Specific resistance of rabbit's cortical tissue. Am J Physiol 205: 203-207. Jones DK, Horsfield MA, Simmons A. 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42: 515-525. Falconer JC, Narayana PA. 1997. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain. Magn Reson Med 37: 119-123. Yukawa Y, Iriguchi N, Ueno S. 1999. Impedance magnetic resonance imaging with external AC field added to main static field. IEEE Trans Magn 35: 4121-4123. Merwa R, Hollaus K, Oszkar B, Scharfetter H. 2004. Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability. Physiol Meas 25: 347-354. Sekino M, Yamaguchi K, Iriguchi N, Ueno S. 2003. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93: 6730-6732. Shafiro B, Kachanov M. 2000. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87: 8561-8569. Hoeltzell PB, Dykes RW. 1979. Conductivity in the somatosensory cortex of the cat-Evidence for cortical anisotropy. Brain Res 177: 61-82. Sehy JV, Ackerman JJ, Neil JJ. 2002. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48: 765-770. Wang K, Zhu S, Mueller BA, Lim KO, Liu Z, He B. 2008. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55: 2481-2486. Verheul HB, Balazs R, Berkelbach van der Sprenkel JW, Tulleken CAF, Nicolay K, Tamminga KS, van Lookeren Campagne M. 1994. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96-100. Mayer M, Brunner P, Merwa R, Smolle-Jüttner FM, Maier A, Scharfetter H. 2006. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo. Physiol Meas 27: S93-S101. Ranck JB, Jr. 1963. Specific impedance of rabbit cerebral cortex. Exp Neurol 7: 144-152. Maier SE, Vajapeyam S, Mamata H, Westin CF, Jolesz FA, Mulkern RV. 2004. Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med 51: 321-330. Kreuer KD, Schönherr E, Maier J. 1994. Proton and oxygen diffusion in BaCeO3 based compounds: A combined thermal gravimetric analysis and conductivity study. Solid State Ionics 70: 278-284. Xu J, Li GZ, Zhang ZQ, Zhou GW, Ji KJ. 2001. A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM. Colloid Surf A 191: 269-278. Sekino M, Inoue Y, Ueno S. 2005. Magnetic resonance imaging of electrical conductivity in the human brain. IEEE Trans Magn 41: 4203-4205. Stoy RD, Foster KR, Schwan HP. 1982. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data. Phys Med Biol 27: 501-513. Nicholson PW. 1965. Specific impedance of cerebral white matter. Exp Neurol 13: 386-401. Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. 1999. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137: 67-82. Saulnier GJ, Blue RS, Newell JC, Isaacson D, Edic PM. 2001. Electrical impedance tomography. IEEE Signal Process Mag 18: 31-43. Clark CA, Le Bihan D. 2000. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44: 852-859. Hasan KM, Alexander AL, Narayana PA. 2004. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 51: 413-417. Ueno S, Iriguchi N. 1998. Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging. J Appl Phys 83: 6450-6452. Cohen D. 1968. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161: 784-786. Marquardt DW. 1963. An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11: 431- 441. Sen PN, Scala C, Cohen MH. 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46: 781-795. Cole KS, Li CL, Bak AF. 1969. Electrical analogues for tissues. Exp Neurol 24: 459-473. Basser PJ. 1997. New histological and physiological stains derived from diffusion-tensor MR images. Ann N Y Acad Sci 820: 123-138. Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209-219. Clark CA, Hedehus M, Moseley ME. 2002. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 47: 623-628. Hasan KM, Parker DL, Alexander AL. 2001. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13: 769-780. Matherall P, Barger DC, Smallwood RH, Brown BH. 1996. Three-dimensional electrical impedance tomography. Nature 380: 509-512. Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW. 2006. Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18: 281-290. 1993; 29 1965; 13 1997; 44 2004; 25 2000; 87 2000; 44 2006; 9 1998 1992; 39 2005; 41 1981; 46 2006; 18 1996 1996; 380 1999; 42 2008; 55 2003 1998; 83 1996; 36 2003; 93 1998; 84 1955; 45 2002; 47 1997; 820 2002; 48 1982; 27 2004; 51 2003; 107 1963; 11 1979; 177 2001; 191 1963; 7 1997; 37 2006; 27 1967; 5 1963; 205 1999; 35 1969; 24 1996; 111 1968; 161 2001; 18 2002; 91 1994; 70 2001; 13 1999; 137 1994; 7 e_1_2_1_42_1 e_1_2_1_20_1 e_1_2_1_41_1 Butson CR (e_1_2_1_6_1) 2006; 9 e_1_2_1_40_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_29_1 Paxinos G (e_1_2_1_32_1) 1998 e_1_2_1_7_1 e_1_2_1_31_1 van Harreveld A (e_1_2_1_44_1) 1963; 205 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 Atkins PW (e_1_2_1_3_1) 1998 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
| References_xml | – reference: Mayer M, Brunner P, Merwa R, Smolle-Jüttner FM, Maier A, Scharfetter H. 2006. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo. Physiol Meas 27: S93-S101. – reference: Matherall P, Barger DC, Smallwood RH, Brown BH. 1996. Three-dimensional electrical impedance tomography. Nature 380: 509-512. – reference: Geddes LA, Baker LE. 1967. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5: 271-293. – reference: Jones DK, Horsfield MA, Simmons A. 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42: 515-525. – reference: Shafiro B, Kachanov M. 2000. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87: 8561-8569. – reference: Lu SY. 1998. Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. J Appl Phys 84: 2647-2655. – reference: Hasan KM, Alexander AL, Narayana PA. 2004. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 51: 413-417. – reference: Maier SE, Vajapeyam S, Mamata H, Westin CF, Jolesz FA, Mulkern RV. 2004. Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med 51: 321-330. – reference: Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. 1999. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137: 67-82. – reference: Hasan KM, Parker DL, Alexander AL. 2001. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13: 769-780. – reference: Niendorf T, Dijkhuisen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996. Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging. Magn Reson Med 36: 847-857. – reference: Yukawa Y, Iriguchi N, Ueno S. 1999. Impedance magnetic resonance imaging with external AC field added to main static field. IEEE Trans Magn 35: 4121-4123. – reference: Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW. 2006. Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18: 281-290. – reference: Clark CA, Le Bihan D. 2000. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44: 852-859. – reference: Sehy JV, Ackerman JJ, Neil JJ. 2002. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48: 765-770. – reference: Verheul HB, Balazs R, Berkelbach van der Sprenkel JW, Tulleken CAF, Nicolay K, Tamminga KS, van Lookeren Campagne M. 1994. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96-100. – reference: Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. 1997. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44: 727-735. – reference: Xu J, Li GZ, Zhang ZQ, Zhou GW, Ji KJ. 2001. A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM. Colloid Surf A 191: 269-278. – reference: Atkins PW. 1998. Physical chemistry. Oxford: Oxford University Press. – reference: Marquardt DW. 1963. An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11: 431- 441. – reference: Paxinos G, Watson C. 1998. The rat brain. San Diego: Academic Press. – reference: Butson CR, Cooper SE, Henderson JM, McIntyre CC. 2006. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9: 429-437. – reference: Cohen D. 1968. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161: 784-786. – reference: Merwa R, Hollaus K, Oszkar B, Scharfetter H. 2004. Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability. Physiol Meas 25: 347-354. – reference: Ueno S, Iriguchi N. 1998. Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging. J Appl Phys 83: 6450-6452. – reference: Saulnier GJ, Blue RS, Newell JC, Isaacson D, Edic PM. 2001. Electrical impedance tomography. IEEE Signal Process Mag 18: 31-43. – reference: Freygang WH, Jr., Landau WM. 1955. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol 45: 377-392. – reference: Merboldt KD, Hörstermann D, Hänicke W, Bruhn H, Frahm J. 1993. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29: 125-129. – reference: Kataoka H, Eguchi T, Masui H, Miyakubo K, Nakayama H, Nakamura N. 2003. Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2-ethylhexyl) sulfosuccinate-based microemulsion. J Phys Chem B 107: 12542-12548. – reference: Nicholson PW. 1965. Specific impedance of cerebral white matter. Exp Neurol 13: 386-401. – reference: Falconer JC, Narayana PA. 1997. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain. Magn Reson Med 37: 119-123. – reference: Sen PN, Scala C, Cohen MH. 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46: 781-795. – reference: Sekino M, Yamaguchi K, Iriguchi N, Ueno S. 2003. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93: 6730-6732. – reference: Kreuer KD, Schönherr E, Maier J. 1994. Proton and oxygen diffusion in BaCeO3 based compounds: A combined thermal gravimetric analysis and conductivity study. Solid State Ionics 70: 278-284. – reference: Basser PJ. 1997. New histological and physiological stains derived from diffusion-tensor MR images. Ann N Y Acad Sci 820: 123-138. – reference: Hoeltzell PB, Dykes RW. 1979. Conductivity in the somatosensory cortex of the cat-Evidence for cortical anisotropy. Brain Res 177: 61-82. – reference: van Harreveld A, Murphy A, Nobel KW. 1963. Specific resistance of rabbit's cortical tissue. Am J Physiol 205: 203-207. – reference: Zhou H, van Oosterom A. 1992. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor. IEEE Trans Biomed Eng 39: 154-158. – reference: Ranck JB, Jr. 1963. Specific impedance of rabbit cerebral cortex. Exp Neurol 7: 144-152. – reference: Clark CA, Hedehus M, Moseley ME. 2002. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 47: 623-628. – reference: Cole KS, Li CL, Bak AF. 1969. Electrical analogues for tissues. Exp Neurol 24: 459-473. – reference: Sekino M, Ueno S. 2002. Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. J Appl Phys 91: 8730-8732. – reference: Wang K, Zhu S, Mueller BA, Lim KO, Liu Z, He B. 2008. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55: 2481-2486. – reference: Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209-219. – reference: Sekino M, Inoue Y, Ueno S. 2005. Magnetic resonance imaging of electrical conductivity in the human brain. IEEE Trans Magn 41: 4203-4205. – reference: Stoy RD, Foster KR, Schwan HP. 1982. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data. Phys Med Biol 27: 501-513. – volume: 27 start-page: S93 year: 2006 end-page: S101 article-title: Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo publication-title: Physiol Meas – volume: 205 start-page: 203 year: 1963 end-page: 207 article-title: Specific resistance of rabbit's cortical tissue publication-title: Am J Physiol – volume: 42 start-page: 515 year: 1999 end-page: 525 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn Reson Med – volume: 18 start-page: 31 year: 2001 end-page: 43 article-title: Electrical impedance tomography publication-title: IEEE Signal Process Mag – volume: 46 start-page: 781 year: 1981 end-page: 795 article-title: A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads publication-title: Geophysics – volume: 87 start-page: 8561 year: 2000 end-page: 8569 article-title: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes publication-title: J Appl Phys – volume: 44 start-page: 852 year: 2000 end-page: 859 article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain publication-title: Magn Reson Med – volume: 37 start-page: 119 year: 1997 end-page: 123 article-title: Cerebrospinal fluid‐suppressed high‐resolution diffusion imaging of human brain publication-title: Magn Reson Med – volume: 9 start-page: 429 year: 2006 end-page: 437 article-title: Predicting the effects of deep brain stimulation with diffusion tensor based electric field models publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv – year: 2003 – volume: 83 start-page: 6450 year: 1998 end-page: 6452 article-title: Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging publication-title: J Appl Phys – volume: 191 start-page: 269 year: 2001 end-page: 278 article-title: A study of the microstructure of CTAB/1‐butanol/octane/water system by PGSE‐NMR, conductivity and cryo‐TEM publication-title: Colloid Surf A – year: 1996 – volume: 18 start-page: 281 year: 2006 end-page: 290 article-title: Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging publication-title: Brain Topogr – volume: 7 start-page: 96 year: 1994 end-page: 100 article-title: Comparison of diffusion‐weighted MRI with changes in cell volume in a rat model of brain injury publication-title: NMR Biomed – volume: 51 start-page: 321 year: 2004 end-page: 330 article-title: Biexponential diffusion tensor analysis of human brain diffusion data publication-title: Magn Reson Med – volume: 91 start-page: 8730 year: 2002 end-page: 8732 article-title: Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation publication-title: J Appl Phys – volume: 107 start-page: 12542 year: 2003 end-page: 12548 article-title: Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2‐ethylhexyl) sulfosuccinate‐based microemulsion publication-title: J Phys Chem B – volume: 55 start-page: 2481 year: 2008 end-page: 2486 article-title: A new method to derive white matter conductivity from diffusion tensor MRI publication-title: IEEE Trans Biomed Eng – volume: 51 start-page: 413 year: 2004 end-page: 417 article-title: Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach publication-title: Magn Reson Med – volume: 820 start-page: 123 year: 1997 end-page: 138 article-title: New histological and physiological stains derived from diffusion‐tensor MR images publication-title: Ann N Y Acad Sci – volume: 5 start-page: 271 year: 1967 end-page: 293 article-title: The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist publication-title: Med Biol Eng – volume: 24 start-page: 459 year: 1969 end-page: 473 article-title: Electrical analogues for tissues publication-title: Exp Neurol – volume: 84 start-page: 2647 year: 1998 end-page: 2655 article-title: Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model publication-title: J Appl Phys – volume: 25 start-page: 347 year: 2004 end-page: 354 article-title: Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability publication-title: Physiol Meas – volume: 35 start-page: 4121 year: 1999 end-page: 4123 article-title: Impedance magnetic resonance imaging with external AC field added to main static field publication-title: IEEE Trans Magn – volume: 70 start-page: 278 year: 1994 end-page: 284 article-title: Proton and oxygen diffusion in BaCeO based compounds: A combined thermal gravimetric analysis and conductivity study publication-title: Solid State Ionics – year: 1998 – volume: 44 start-page: 727 year: 1997 end-page: 735 article-title: Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head publication-title: IEEE Trans Biomed Eng – volume: 93 start-page: 6730 year: 2003 end-page: 6732 article-title: Conductivity tensor imaging of the brain using diffusion‐weighted magnetic resonance imaging publication-title: J Appl Phys – volume: 13 start-page: 769 year: 2001 end-page: 780 article-title: Comparison of gradient encoding schemes for diffusion‐tensor MRI publication-title: J Magn Reson Imaging – volume: 13 start-page: 386 year: 1965 end-page: 401 article-title: Specific impedance of cerebral white matter publication-title: Exp Neurol – volume: 137 start-page: 67 year: 1999 end-page: 82 article-title: A comparative study of acquisition schemes for diffusion tensor imaging using MRI publication-title: J Magn Reson – volume: 380 start-page: 509 year: 1996 end-page: 512 article-title: Three‐dimensional electrical impedance tomography publication-title: Nature – volume: 7 start-page: 144 year: 1963 end-page: 152 article-title: Specific impedance of rabbit cerebral cortex publication-title: Exp Neurol – volume: 45 start-page: 377 year: 1955 end-page: 392 article-title: Some relations between resistivity and electrical activity in the cerebral cortex of the cat publication-title: J Cell Physiol – volume: 39 start-page: 154 year: 1992 end-page: 158 article-title: Computation of the potential distribution in a four‐layer anisotropic concentric spherical volume conductor publication-title: IEEE Trans Biomed Eng – volume: 177 start-page: 61 year: 1979 end-page: 82 article-title: Conductivity in the somatosensory cortex of the cat—Evidence for cortical anisotropy publication-title: Brain Res – volume: 11 start-page: 431 year: 1963 end-page: 441 article-title: An algorithm for least‐squares estimations of nonlinear parameters publication-title: J Soc Ind Appl Math – volume: 48 start-page: 765 year: 2002 end-page: 770 article-title: Evidence that both fast and slow water ADC components arise from intracellular space publication-title: Magn Reson Med – volume: 36 start-page: 847 year: 1996 end-page: 857 article-title: Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion‐weighted imaging publication-title: Magn Reson Med – volume: 29 start-page: 125 year: 1993 end-page: 129 article-title: Molecular self‐diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy publication-title: Magn Reson Med – volume: 111 start-page: 209 year: 1996 end-page: 219 article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI publication-title: J Magn Reson B – volume: 161 start-page: 784 year: 1968 end-page: 786 article-title: Magnetoencephalography: Evidence of magnetic fields produced by alpha‐rhythm currents publication-title: Science – volume: 47 start-page: 623 year: 2002 end-page: 628 article-title: In vivo mapping of the fast and slow diffusion tensors in human brain publication-title: Magn Reson Med – volume: 27 start-page: 501 year: 1982 end-page: 513 article-title: Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data publication-title: Phys Med Biol – volume: 41 start-page: 4203 year: 2005 end-page: 4205 article-title: Magnetic resonance imaging of electrical conductivity in the human brain publication-title: IEEE Trans Magn – ident: e_1_2_1_8_1 doi: 10.1002/mrm.10118 – ident: e_1_2_1_7_1 doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A – volume-title: The rat brain year: 1998 ident: e_1_2_1_32_1 – ident: e_1_2_1_40_1 doi: 10.1190/1.1441215 – ident: e_1_2_1_43_1 doi: 10.1063/1.367599 – ident: e_1_2_1_13_1 doi: 10.21236/ADA303903 – ident: e_1_2_1_21_1 doi: 10.1016/0167-2738(94)90323-9 – ident: e_1_2_1_42_1 doi: 10.1088/0031-9155/27/4/002 – ident: e_1_2_1_23_1 doi: 10.1002/mrm.10685 – ident: e_1_2_1_5_1 doi: 10.1006/jmrb.1996.0086 – ident: e_1_2_1_19_1 doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 205 start-page: 203 year: 1963 ident: e_1_2_1_44_1 article-title: Specific resistance of rabbit's cortical tissue publication-title: Am J Physiol doi: 10.1152/ajplegacy.1963.205.1.203 – ident: e_1_2_1_45_1 doi: 10.1002/nbm.1940070115 – ident: e_1_2_1_46_1 doi: 10.1109/TBME.2008.923159 – volume: 9 start-page: 429 year: 2006 ident: e_1_2_1_6_1 article-title: Predicting the effects of deep brain stimulation with diffusion tensor based electric field models publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv – ident: e_1_2_1_26_1 doi: 10.1088/0967-3334/27/5/S08 – ident: e_1_2_1_24_1 doi: 10.1137/0111030 – ident: e_1_2_1_29_1 doi: 10.1016/0014-4886(65)90126-3 – ident: e_1_2_1_4_1 doi: 10.1111/j.1749-6632.1997.tb46192.x – ident: e_1_2_1_15_1 doi: 10.1002/jmri.1107 – ident: e_1_2_1_34_1 – ident: e_1_2_1_41_1 doi: 10.1063/1.373579 – ident: e_1_2_1_31_1 doi: 10.1006/jmre.1998.1673 – ident: e_1_2_1_47_1 doi: 10.1016/S0927-7757(01)00689-6 – ident: e_1_2_1_35_1 doi: 10.1109/79.962276 – ident: e_1_2_1_10_1 doi: 10.1016/0014-4886(69)90149-6 – ident: e_1_2_1_9_1 doi: 10.1126/science.161.3843.784 – ident: e_1_2_1_33_1 doi: 10.1016/S0014-4886(63)80005-9 – ident: e_1_2_1_39_1 doi: 10.1109/TMAG.2005.854804 – ident: e_1_2_1_14_1 doi: 10.1007/BF02474537 – ident: e_1_2_1_25_1 doi: 10.1038/380509a0 – ident: e_1_2_1_28_1 doi: 10.1088/0967-3334/25/1/038 – ident: e_1_2_1_37_1 doi: 10.1063/1.1454987 – ident: e_1_2_1_20_1 doi: 10.1021/jp020510a – ident: e_1_2_1_36_1 doi: 10.1002/mrm.10301 – ident: e_1_2_1_16_1 doi: 10.1002/mrm.10682 – ident: e_1_2_1_12_1 doi: 10.1002/jcp.1030450305 – ident: e_1_2_1_49_1 doi: 10.1109/10.121646 – ident: e_1_2_1_27_1 doi: 10.1002/mrm.1910290123 – ident: e_1_2_1_22_1 doi: 10.1063/1.368377 – ident: e_1_2_1_2_1 doi: 10.1007/s10548-006-0006-x – ident: e_1_2_1_18_1 doi: 10.1016/0006-8993(79)90918-1 – ident: e_1_2_1_11_1 doi: 10.1002/mrm.1910370117 – ident: e_1_2_1_48_1 doi: 10.1109/20.800775 – ident: e_1_2_1_17_1 doi: 10.1109/10.605429 – ident: e_1_2_1_38_1 doi: 10.1063/1.1544446 – ident: e_1_2_1_30_1 doi: 10.1002/mrm.1910360607 – volume-title: Physical chemistry year: 1998 ident: e_1_2_1_3_1 |
| SSID | ssj0008803 |
| Score | 1.976718 |
| Snippet | Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 489 |
| SubjectTerms | Algorithms Animals Anisotropy Brain - physiology Brain Mapping - methods Cerebral Cortex - physiology conductivity Corpus Callosum - physiology Diffusion Magnetic Resonance Imaging - methods Electric Conductivity magnetic resonance Male Models, Neurological Rats Rats, Wistar |
| Title | Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI |
| URI | https://api.istex.fr/ark:/67375/WNG-PQ0324G2-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbem.20505 https://www.ncbi.nlm.nih.gov/pubmed/19437459 https://www.proquest.com/docview/67535391 https://www.proquest.com/docview/746058646 |
| Volume | 30 |
| WOSCitedRecordID | wos000269141800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-186X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008803 issn: 0197-8462 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC2FGUBcWBKWYQkWQhGXVtxe2tPilEAmIM2MQpTA3FpeLyTdqCcD5MYn8I18CbZ7iSIlEhI3H6oldy2usqvqFcBrwaX3PIolUmc4Yc5micRKJxgbYozLbB4BTD9PxXw-XizygzV42_XCNPgQ_YNbsIx4XgcDl2q5fQEaqmxoJOcBv3RIvN6yAQzfH06Op_1B7FWTNt3S_iBmGemAhTDZ7j--5I6GgbM_r4o1L4eu0fdM7v3Xru_D3TbkRDuNjjyANVuuw8ZO6a_bp-doC8Ui0Pi6vg63drvV7Vmbdd-Ao2n148-v365uyq7Pkb9DB5jYOHcChRL4qkaVQ16ZkAojJ9BZFOcShVKvurYGhS4WFIaxrMLrHJodfnwIx5O9o3cfknYaQ6IZz3kiKcu1zXPDnXZ8rLAVSqdWYIe1EqnDgkguCHYkJO-Yc8ZpH39YojObck3pIxiUVWmfAHKOSOYdoXJWM2XGUjuWmtRRKowjho3gTSeUQrdQ5WFixknRgCyTwrOxiGwcwaue9FuDz3EV0VaUbE8h66-hoE3w4st8vzj4hH1YuU8KT_iyE33hzSzkTmRpq9XSU3PKaZ6OAF1DIWKGOWPZCB43SnOxoZxR4Zno_yvqxvU7LXb3ZnHx9N9Jn8GdJsUVCt-ew-CsXtkXcFN_97KuN-GGWIw3W9P4CxJdEPA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h3b4ufUBLty-sqkK9RDiOHW-kXqBlATW7omgp3Kz4dWmboMC25dafwG_kl9R2HggJpEq9-TCRnHl4xp6ZbwDecVY4zyNpVKgUR9SaNCqwVBHGmmhtU5MFANOvOZ_NxsfH2f4SfOh6YRp8iP7BzVtGOK-9gfsH6Y0r1FBpfCc58wCmQ-rUiA1g-Olgcpj3J7HTzaRpl3YnMU1JhyyEyUb_8TV_NPSs_X1TsHk9dg3OZ_Lo_7b9GB62QSfabLTkCSyZchlWNkt34f5xjtZRKAMN7-vLcHerW92btnn3FZjn1a_LPxe2bgqvz5G7RXug2DB5Avki-KpGlUVOnZD0QyfQWRDoKfLFXnVtNPJ9LMiPY1n49zk0Pdh7CoeT7fnH3aidxxApyjIWFQnNlMkyzayybCyx4VLFhmOLleSxxZwUjBNsiU_fUWu1VS4CMUSlJmYqSZ7BoKxK8xyQtaSgzhVKaxSVelwoS2Md2yTh2hJNR_C-k4pQLVi5n5nxXTQwy0Q4NorAxhG87UlPGoSOm4jWg2h7iqL-5kvaOBNHsx2x_wW7wHKHCEe41sleOEPz2ZOiNNXi1FGzhCVZPAJ0CwUPOeaUpiNYbbTmakMZTbhjovuvoBy371RsbU_D4sW_k67B_d35NBf53uzzS3jQJLx8GdwrGJzVC_Ma7qifTu71m9ZC_gLwWxP4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4htkW99AF9bF9YVYV6iXAcO95IvUBhKeruaoug5WYltudSSFBg23LrT-hv7C-p7TwQEkiVevNhIjnz8Iw9M98AvJUid56n4FGuUxpxtGmU00JHlBpmDKY2CwCmXyZyNhsdH2fzJXjf9cI0-BD9g5u3jHBeewO3ZwY3r1BDC-s7yYUHMB1wkaXOLAc7B-OjSX8SO91MmnZpdxLzlHXIQpRt9h9f80cDz9qfNwWb12PX4HzGD_5v2w_hfht0kq1GSx7Bki1XYW2rdBfu00uyQUIZaHhfX4W7291qZdrm3dfgcFL9-PPrN9ZN4fUlcbdoDxQbJk8QXwRf1aRC4tSJFH7oBLkIAj0nvtirrq0hvo-F-HEsC_8-R6YH-4_haLx7-OFj1M5jiLTjr4jyhGfaZpkRqFGMCmploWMrKVJdyBipZLmQjCLz6TuOaFC7CMQyndpY6CR5AstlVdpnQBBZzp0rLNBqXphRrpHHJsYkkQaZ4UN410lF6Ras3M_MOFENzDJTjo0qsHEIb3rSswah4yaijSDaniKvv_mSNinU19memn-mLrDcY8oRrneyV87QfPYkL221OHfUIhFJFg-B3EIhQ4455ekQnjZac7WhjCfSMdH9V1CO23eqtnenYfH830nXYWW-M1aT_dmnF3CvyXf5KriXsHxRL-wruKO_O7HXr1sD-QtfJhNz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90frequency+conductivity+tensor+of+rat+brain+tissues+inferred+from+diffusion+MRI&rft.jtitle=Bioelectromagnetics&rft.au=Sekino%2C+Masaki&rft.au=Ohsaki%2C+Hiroyuki&rft.au=Yamaguchi%E2%80%90Sekino%2C+Sachiko&rft.au=Iriguchi%2C+Norio&rft.date=2009-09-01&rft.issn=0197-8462&rft.eissn=1521-186X&rft.volume=30&rft.issue=6&rft.spage=489&rft.epage=499&rft_id=info:doi/10.1002%2Fbem.20505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bem_20505 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-8462&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-8462&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-8462&client=summon |