Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI

Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published meth...

Full description

Saved in:
Bibliographic Details
Published in:Bioelectromagnetics Vol. 30; no. 6; pp. 489 - 499
Main Authors: Sekino, Masaki, Ohsaki, Hiroyuki, Yamaguchi-Sekino, Sachiko, Iriguchi, Norio, Ueno, Shoogo
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2009
Subjects:
ISSN:0197-8462, 1521-186X, 1521-186X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc.
AbstractList Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 X 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489-499, 2009.
Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid.Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid.
Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm 2 . Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm 2 . Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc.
Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm(2). Our previously published method was improved to infer 3 x 3 conductivity tensor at the low-frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion-weighted images were obtained with b factors up to 4500 s/mm(2). Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low-frequency limit because our method assumed electric currents flowing only through extracellular fluid.
Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus callosum were measured using the stimulated echo acquisition mode (STEAM) sequence with b factors up to 6000 s/mm2. Our previously published method was improved to infer 3 × 3 conductivity tensor at the low‐frequency limit. The conductivity tensor of the tissue was inferred from the fast component of the diffusion tensor and a fraction of the fast component. The mean conductivity (MC) of the cortex and the corpus callosum was 0.52 and 0.62 S/m, respectively. Diffusion‐weighted images were obtained with b factors up to 4500 s/mm2. Conductivity tensor images were calculated from the fast diffusion tensor images. Tissues with highly anisotropic cellular structures, such as the corpus callosum, the internal capsule, and the trigeminal nerve, exhibited high anisotropy in conductivity. The resulting values corresponded to conductivities at the low‐frequency limit because our method assumed electric currents flowing only through extracellular fluid. Bioelectromagnetics 30:489–499, 2009. © 2009 Wiley‐Liss, Inc.
Author Iriguchi, Norio
Ohsaki, Hiroyuki
Sekino, Masaki
Yamaguchi-Sekino, Sachiko
Ueno, Shoogo
Author_xml – sequence: 1
  givenname: Masaki
  surname: Sekino
  fullname: Sekino, Masaki
  email: sekino@k.u-tokyo.ac.jp
  organization: Department of Advanced Energy, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Hiroyuki
  surname: Ohsaki
  fullname: Ohsaki, Hiroyuki
  organization: Department of Advanced Energy, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Sachiko
  surname: Yamaguchi-Sekino
  fullname: Yamaguchi-Sekino, Sachiko
  organization: Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
– sequence: 4
  givenname: Norio
  surname: Iriguchi
  fullname: Iriguchi, Norio
  organization: Center for Multimedia and Information Technologies, Kumamoto University, Kumamoto, Japan
– sequence: 5
  givenname: Shoogo
  surname: Ueno
  fullname: Ueno, Shoogo
  organization: Department of Applied Quantum Physics, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19437459$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFA38A-QTikHZsx3FyhKoslbZ8VCC4WY4zlgxJXGyHsv8ew257QMDJl-d5xzPvETmYw4yEPGZwwgD4aY_TCQcJ8h5ZMclZxdrm8wFZAetU1dYNPyRHKX0BgLYF8YAcsq4Wqpbdilxtwk3lIn5bcLZbasM8LDb77z5vacY5hUiDo9Fk2kfjZ5p9Sgsm6meHMeJAXQwTHbxzS_JhppdXFw_JfWfGhI_27zH5-Or8w9nravN2fXH2YlPZMllWRtSdxa4bpLNOtj2g6i1DBQ5sr5gDxY1UHByHlovaucFZUC1y2yCTVohj8myXex1D-X7KevLJ4jiaGcOStKobkG1TN4V8-l-yUVJI0bECPtmDSz_hoK-jn0zc6tt7FeB0B9gYUorotPXZ5LJ5LucZNQP9qxFdGtG_GynG8z-Mu9C_sPv0Gz_i9t-gfnl-eWtUO8OnjD_uDBO_lqWEkvrTm7V-9x4Er9dcS_ETQpapNQ
CitedBy_id crossref_primary_10_1002_bem_20714
crossref_primary_10_1016_j_matcom_2017_11_006
crossref_primary_10_1371_journal_pone_0197063
crossref_primary_10_1098_rsos_220552
crossref_primary_10_1016_j_apm_2019_05_002
crossref_primary_10_1038_s41598_023_30344_1
crossref_primary_10_1088_0031_9155_59_12_2955
crossref_primary_10_1186_s12885_017_3159_y
crossref_primary_10_1029_2020RS007152
crossref_primary_10_1109_TMAG_2011_2171925
crossref_primary_10_1016_j_jneumeth_2010_11_024
crossref_primary_10_1063_1_4928652
crossref_primary_10_1016_j_neuroimage_2020_117466
crossref_primary_10_1063_1_4973818
crossref_primary_10_1016_j_matcom_2017_01_004
crossref_primary_10_1002_bem_20611
Cites_doi 10.1002/mrm.10118
10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
10.1190/1.1441215
10.1063/1.367599
10.21236/ADA303903
10.1016/0167-2738(94)90323-9
10.1088/0031-9155/27/4/002
10.1002/mrm.10685
10.1006/jmrb.1996.0086
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1152/ajplegacy.1963.205.1.203
10.1002/nbm.1940070115
10.1109/TBME.2008.923159
10.1088/0967-3334/27/5/S08
10.1137/0111030
10.1016/0014-4886(65)90126-3
10.1111/j.1749-6632.1997.tb46192.x
10.1002/jmri.1107
10.1063/1.373579
10.1006/jmre.1998.1673
10.1016/S0927-7757(01)00689-6
10.1109/79.962276
10.1016/0014-4886(69)90149-6
10.1126/science.161.3843.784
10.1016/S0014-4886(63)80005-9
10.1109/TMAG.2005.854804
10.1007/BF02474537
10.1038/380509a0
10.1088/0967-3334/25/1/038
10.1063/1.1454987
10.1021/jp020510a
10.1002/mrm.10301
10.1002/mrm.10682
10.1002/jcp.1030450305
10.1109/10.121646
10.1002/mrm.1910290123
10.1063/1.368377
10.1007/s10548-006-0006-x
10.1016/0006-8993(79)90918-1
10.1002/mrm.1910370117
10.1109/20.800775
10.1109/10.605429
10.1063/1.1544446
10.1002/mrm.1910360607
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1002/bem.20505
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1521-186X
EndPage 499
ExternalDocumentID 19437459
10_1002_bem_20505
BEM20505
ark_67375_WNG_PQ0324G2_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology, Japan
– fundername: Gran‐in‐Aid for Young Scientists(A)
  funderid: 18680037
– fundername: Grant‐in‐Aid for Scientific Research(s)
  funderid: 17100006
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
WRC
WSB
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c4595-a349ce99d5fcf58b0e7bc1e70f0cb71f072a5720f208234ffdfc078e2c6e15c33
IEDL.DBID DRFUL
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269141800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0197-8462
1521-186X
IngestDate Fri Jul 11 16:14:51 EDT 2025
Sun Nov 09 09:22:25 EST 2025
Mon Jul 21 05:38:58 EDT 2025
Tue Nov 18 21:49:04 EST 2025
Sat Nov 29 05:30:00 EST 2025
Wed Jan 22 17:10:38 EST 2025
Tue Sep 09 05:29:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4595-a349ce99d5fcf58b0e7bc1e70f0cb71f072a5720f208234ffdfc078e2c6e15c33
Notes Gran-in-Aid for Young Scientists(A) - No. 18680037
ArticleID:BEM20505
istex:0F7DF5D43D75118BCAD948B7E5E376F40909E183
ark:/67375/WNG-PQ0324G2-5
Ministry of Education, Culture, Sports, Science and Technology, Japan
Grant-in-Aid for Scientific Research(s) - No. 17100006
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19437459
PQID 67535391
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_746058646
proquest_miscellaneous_67535391
pubmed_primary_19437459
crossref_citationtrail_10_1002_bem_20505
crossref_primary_10_1002_bem_20505
wiley_primary_10_1002_bem_20505_BEM20505
istex_primary_ark_67375_WNG_PQ0324G2_5
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Bioelectromagnetics
PublicationTitleAlternate Bioelectromagnetics
PublicationYear 2009
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Geddes LA, Baker LE. 1967. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5: 271-293.
Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. 1997. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44: 727-735.
Kataoka H, Eguchi T, Masui H, Miyakubo K, Nakayama H, Nakamura N. 2003. Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2-ethylhexyl) sulfosuccinate-based microemulsion. J Phys Chem B 107: 12542-12548.
Niendorf T, Dijkhuisen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996. Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging. Magn Reson Med 36: 847-857.
Butson CR, Cooper SE, Henderson JM, McIntyre CC. 2006. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9: 429-437.
Zhou H, van Oosterom A. 1992. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor. IEEE Trans Biomed Eng 39: 154-158.
Lu SY. 1998. Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. J Appl Phys 84: 2647-2655.
Paxinos G, Watson C. 1998. The rat brain. San Diego: Academic Press.
Sekino M, Ueno S. 2002. Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. J Appl Phys 91: 8730-8732.
Freygang WH, Jr., Landau WM. 1955. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol 45: 377-392.
Atkins PW. 1998. Physical chemistry. Oxford: Oxford University Press.
Merboldt KD, Hörstermann D, Hänicke W, Bruhn H, Frahm J. 1993. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29: 125-129.
van Harreveld A, Murphy A, Nobel KW. 1963. Specific resistance of rabbit's cortical tissue. Am J Physiol 205: 203-207.
Jones DK, Horsfield MA, Simmons A. 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42: 515-525.
Falconer JC, Narayana PA. 1997. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain. Magn Reson Med 37: 119-123.
Yukawa Y, Iriguchi N, Ueno S. 1999. Impedance magnetic resonance imaging with external AC field added to main static field. IEEE Trans Magn 35: 4121-4123.
Merwa R, Hollaus K, Oszkar B, Scharfetter H. 2004. Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability. Physiol Meas 25: 347-354.
Sekino M, Yamaguchi K, Iriguchi N, Ueno S. 2003. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93: 6730-6732.
Shafiro B, Kachanov M. 2000. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87: 8561-8569.
Hoeltzell PB, Dykes RW. 1979. Conductivity in the somatosensory cortex of the cat-Evidence for cortical anisotropy. Brain Res 177: 61-82.
Sehy JV, Ackerman JJ, Neil JJ. 2002. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48: 765-770.
Wang K, Zhu S, Mueller BA, Lim KO, Liu Z, He B. 2008. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55: 2481-2486.
Verheul HB, Balazs R, Berkelbach van der Sprenkel JW, Tulleken CAF, Nicolay K, Tamminga KS, van Lookeren Campagne M. 1994. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96-100.
Mayer M, Brunner P, Merwa R, Smolle-Jüttner FM, Maier A, Scharfetter H. 2006. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo. Physiol Meas 27: S93-S101.
Ranck JB, Jr. 1963. Specific impedance of rabbit cerebral cortex. Exp Neurol 7: 144-152.
Maier SE, Vajapeyam S, Mamata H, Westin CF, Jolesz FA, Mulkern RV. 2004. Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med 51: 321-330.
Kreuer KD, Schönherr E, Maier J. 1994. Proton and oxygen diffusion in BaCeO3 based compounds: A combined thermal gravimetric analysis and conductivity study. Solid State Ionics 70: 278-284.
Xu J, Li GZ, Zhang ZQ, Zhou GW, Ji KJ. 2001. A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM. Colloid Surf A 191: 269-278.
Sekino M, Inoue Y, Ueno S. 2005. Magnetic resonance imaging of electrical conductivity in the human brain. IEEE Trans Magn 41: 4203-4205.
Stoy RD, Foster KR, Schwan HP. 1982. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data. Phys Med Biol 27: 501-513.
Nicholson PW. 1965. Specific impedance of cerebral white matter. Exp Neurol 13: 386-401.
Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. 1999. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137: 67-82.
Saulnier GJ, Blue RS, Newell JC, Isaacson D, Edic PM. 2001. Electrical impedance tomography. IEEE Signal Process Mag 18: 31-43.
Clark CA, Le Bihan D. 2000. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44: 852-859.
Hasan KM, Alexander AL, Narayana PA. 2004. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 51: 413-417.
Ueno S, Iriguchi N. 1998. Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging. J Appl Phys 83: 6450-6452.
Cohen D. 1968. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161: 784-786.
Marquardt DW. 1963. An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11: 431- 441.
Sen PN, Scala C, Cohen MH. 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46: 781-795.
Cole KS, Li CL, Bak AF. 1969. Electrical analogues for tissues. Exp Neurol 24: 459-473.
Basser PJ. 1997. New histological and physiological stains derived from diffusion-tensor MR images. Ann N Y Acad Sci 820: 123-138.
Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209-219.
Clark CA, Hedehus M, Moseley ME. 2002. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 47: 623-628.
Hasan KM, Parker DL, Alexander AL. 2001. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13: 769-780.
Matherall P, Barger DC, Smallwood RH, Brown BH. 1996. Three-dimensional electrical impedance tomography. Nature 380: 509-512.
Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW. 2006. Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18: 281-290.
1993; 29
1965; 13
1997; 44
2004; 25
2000; 87
2000; 44
2006; 9
1998
1992; 39
2005; 41
1981; 46
2006; 18
1996
1996; 380
1999; 42
2008; 55
2003
1998; 83
1996; 36
2003; 93
1998; 84
1955; 45
2002; 47
1997; 820
2002; 48
1982; 27
2004; 51
2003; 107
1963; 11
1979; 177
2001; 191
1963; 7
1997; 37
2006; 27
1967; 5
1963; 205
1999; 35
1969; 24
1996; 111
1968; 161
2001; 18
2002; 91
1994; 70
2001; 13
1999; 137
1994; 7
e_1_2_1_42_1
e_1_2_1_20_1
e_1_2_1_41_1
Butson CR (e_1_2_1_6_1) 2006; 9
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_29_1
Paxinos G (e_1_2_1_32_1) 1998
e_1_2_1_7_1
e_1_2_1_31_1
van Harreveld A (e_1_2_1_44_1) 1963; 205
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
Atkins PW (e_1_2_1_3_1) 1998
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Mayer M, Brunner P, Merwa R, Smolle-Jüttner FM, Maier A, Scharfetter H. 2006. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo. Physiol Meas 27: S93-S101.
– reference: Matherall P, Barger DC, Smallwood RH, Brown BH. 1996. Three-dimensional electrical impedance tomography. Nature 380: 509-512.
– reference: Geddes LA, Baker LE. 1967. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5: 271-293.
– reference: Jones DK, Horsfield MA, Simmons A. 1999. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42: 515-525.
– reference: Shafiro B, Kachanov M. 2000. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87: 8561-8569.
– reference: Lu SY. 1998. Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. J Appl Phys 84: 2647-2655.
– reference: Hasan KM, Alexander AL, Narayana PA. 2004. Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach. Magn Reson Med 51: 413-417.
– reference: Maier SE, Vajapeyam S, Mamata H, Westin CF, Jolesz FA, Mulkern RV. 2004. Biexponential diffusion tensor analysis of human brain diffusion data. Magn Reson Med 51: 321-330.
– reference: Papadakis NG, Xing D, Huang CL, Hall LD, Carpenter TA. 1999. A comparative study of acquisition schemes for diffusion tensor imaging using MRI. J Magn Reson 137: 67-82.
– reference: Hasan KM, Parker DL, Alexander AL. 2001. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13: 769-780.
– reference: Niendorf T, Dijkhuisen RM, Norris DG, van Lookeren Campagne M, Nicolay K. 1996. Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging. Magn Reson Med 36: 847-857.
– reference: Yukawa Y, Iriguchi N, Ueno S. 1999. Impedance magnetic resonance imaging with external AC field added to main static field. IEEE Trans Magn 35: 4121-4123.
– reference: Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW. 2006. Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18: 281-290.
– reference: Clark CA, Le Bihan D. 2000. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44: 852-859.
– reference: Sehy JV, Ackerman JJ, Neil JJ. 2002. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48: 765-770.
– reference: Verheul HB, Balazs R, Berkelbach van der Sprenkel JW, Tulleken CAF, Nicolay K, Tamminga KS, van Lookeren Campagne M. 1994. Comparison of diffusion-weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96-100.
– reference: Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. 1997. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44: 727-735.
– reference: Xu J, Li GZ, Zhang ZQ, Zhou GW, Ji KJ. 2001. A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM. Colloid Surf A 191: 269-278.
– reference: Atkins PW. 1998. Physical chemistry. Oxford: Oxford University Press.
– reference: Marquardt DW. 1963. An algorithm for least-squares estimations of nonlinear parameters. J Soc Ind Appl Math 11: 431- 441.
– reference: Paxinos G, Watson C. 1998. The rat brain. San Diego: Academic Press.
– reference: Butson CR, Cooper SE, Henderson JM, McIntyre CC. 2006. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 9: 429-437.
– reference: Cohen D. 1968. Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science 161: 784-786.
– reference: Merwa R, Hollaus K, Oszkar B, Scharfetter H. 2004. Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability. Physiol Meas 25: 347-354.
– reference: Ueno S, Iriguchi N. 1998. Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging. J Appl Phys 83: 6450-6452.
– reference: Saulnier GJ, Blue RS, Newell JC, Isaacson D, Edic PM. 2001. Electrical impedance tomography. IEEE Signal Process Mag 18: 31-43.
– reference: Freygang WH, Jr., Landau WM. 1955. Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Physiol 45: 377-392.
– reference: Merboldt KD, Hörstermann D, Hänicke W, Bruhn H, Frahm J. 1993. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy. Magn Reson Med 29: 125-129.
– reference: Kataoka H, Eguchi T, Masui H, Miyakubo K, Nakayama H, Nakamura N. 2003. Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2-ethylhexyl) sulfosuccinate-based microemulsion. J Phys Chem B 107: 12542-12548.
– reference: Nicholson PW. 1965. Specific impedance of cerebral white matter. Exp Neurol 13: 386-401.
– reference: Falconer JC, Narayana PA. 1997. Cerebrospinal fluid-suppressed high-resolution diffusion imaging of human brain. Magn Reson Med 37: 119-123.
– reference: Sen PN, Scala C, Cohen MH. 1981. A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46: 781-795.
– reference: Sekino M, Yamaguchi K, Iriguchi N, Ueno S. 2003. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys 93: 6730-6732.
– reference: Kreuer KD, Schönherr E, Maier J. 1994. Proton and oxygen diffusion in BaCeO3 based compounds: A combined thermal gravimetric analysis and conductivity study. Solid State Ionics 70: 278-284.
– reference: Basser PJ. 1997. New histological and physiological stains derived from diffusion-tensor MR images. Ann N Y Acad Sci 820: 123-138.
– reference: Hoeltzell PB, Dykes RW. 1979. Conductivity in the somatosensory cortex of the cat-Evidence for cortical anisotropy. Brain Res 177: 61-82.
– reference: van Harreveld A, Murphy A, Nobel KW. 1963. Specific resistance of rabbit's cortical tissue. Am J Physiol 205: 203-207.
– reference: Zhou H, van Oosterom A. 1992. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor. IEEE Trans Biomed Eng 39: 154-158.
– reference: Ranck JB, Jr. 1963. Specific impedance of rabbit cerebral cortex. Exp Neurol 7: 144-152.
– reference: Clark CA, Hedehus M, Moseley ME. 2002. In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 47: 623-628.
– reference: Cole KS, Li CL, Bak AF. 1969. Electrical analogues for tissues. Exp Neurol 24: 459-473.
– reference: Sekino M, Ueno S. 2002. Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. J Appl Phys 91: 8730-8732.
– reference: Wang K, Zhu S, Mueller BA, Lim KO, Liu Z, He B. 2008. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55: 2481-2486.
– reference: Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111: 209-219.
– reference: Sekino M, Inoue Y, Ueno S. 2005. Magnetic resonance imaging of electrical conductivity in the human brain. IEEE Trans Magn 41: 4203-4205.
– reference: Stoy RD, Foster KR, Schwan HP. 1982. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data. Phys Med Biol 27: 501-513.
– volume: 27
  start-page: S93
  year: 2006
  end-page: S101
  article-title: Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo
  publication-title: Physiol Meas
– volume: 205
  start-page: 203
  year: 1963
  end-page: 207
  article-title: Specific resistance of rabbit's cortical tissue
  publication-title: Am J Physiol
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 18
  start-page: 31
  year: 2001
  end-page: 43
  article-title: Electrical impedance tomography
  publication-title: IEEE Signal Process Mag
– volume: 46
  start-page: 781
  year: 1981
  end-page: 795
  article-title: A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads
  publication-title: Geophysics
– volume: 87
  start-page: 8561
  year: 2000
  end-page: 8569
  article-title: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes
  publication-title: J Appl Phys
– volume: 44
  start-page: 852
  year: 2000
  end-page: 859
  article-title: Water diffusion compartmentation and anisotropy at high b values in the human brain
  publication-title: Magn Reson Med
– volume: 37
  start-page: 119
  year: 1997
  end-page: 123
  article-title: Cerebrospinal fluid‐suppressed high‐resolution diffusion imaging of human brain
  publication-title: Magn Reson Med
– volume: 9
  start-page: 429
  year: 2006
  end-page: 437
  article-title: Predicting the effects of deep brain stimulation with diffusion tensor based electric field models
  publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
– year: 2003
– volume: 83
  start-page: 6450
  year: 1998
  end-page: 6452
  article-title: Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging
  publication-title: J Appl Phys
– volume: 191
  start-page: 269
  year: 2001
  end-page: 278
  article-title: A study of the microstructure of CTAB/1‐butanol/octane/water system by PGSE‐NMR, conductivity and cryo‐TEM
  publication-title: Colloid Surf A
– year: 1996
– volume: 18
  start-page: 281
  year: 2006
  end-page: 290
  article-title: Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging
  publication-title: Brain Topogr
– volume: 7
  start-page: 96
  year: 1994
  end-page: 100
  article-title: Comparison of diffusion‐weighted MRI with changes in cell volume in a rat model of brain injury
  publication-title: NMR Biomed
– volume: 51
  start-page: 321
  year: 2004
  end-page: 330
  article-title: Biexponential diffusion tensor analysis of human brain diffusion data
  publication-title: Magn Reson Med
– volume: 91
  start-page: 8730
  year: 2002
  end-page: 8732
  article-title: Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation
  publication-title: J Appl Phys
– volume: 107
  start-page: 12542
  year: 2003
  end-page: 12548
  article-title: Scaling relation between electrical conductivity percolation and water diffusion coefficient in sodium bis(2‐ethylhexyl) sulfosuccinate‐based microemulsion
  publication-title: J Phys Chem B
– volume: 55
  start-page: 2481
  year: 2008
  end-page: 2486
  article-title: A new method to derive white matter conductivity from diffusion tensor MRI
  publication-title: IEEE Trans Biomed Eng
– volume: 51
  start-page: 413
  year: 2004
  end-page: 417
  article-title: Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach
  publication-title: Magn Reson Med
– volume: 820
  start-page: 123
  year: 1997
  end-page: 138
  article-title: New histological and physiological stains derived from diffusion‐tensor MR images
  publication-title: Ann N Y Acad Sci
– volume: 5
  start-page: 271
  year: 1967
  end-page: 293
  article-title: The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist
  publication-title: Med Biol Eng
– volume: 24
  start-page: 459
  year: 1969
  end-page: 473
  article-title: Electrical analogues for tissues
  publication-title: Exp Neurol
– volume: 84
  start-page: 2647
  year: 1998
  end-page: 2655
  article-title: Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model
  publication-title: J Appl Phys
– volume: 25
  start-page: 347
  year: 2004
  end-page: 354
  article-title: Detection of brain oedema using magnetic induction tomography: A feasibility study of the likely sensitivity and detectability
  publication-title: Physiol Meas
– volume: 35
  start-page: 4121
  year: 1999
  end-page: 4123
  article-title: Impedance magnetic resonance imaging with external AC field added to main static field
  publication-title: IEEE Trans Magn
– volume: 70
  start-page: 278
  year: 1994
  end-page: 284
  article-title: Proton and oxygen diffusion in BaCeO based compounds: A combined thermal gravimetric analysis and conductivity study
  publication-title: Solid State Ionics
– year: 1998
– volume: 44
  start-page: 727
  year: 1997
  end-page: 735
  article-title: Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head
  publication-title: IEEE Trans Biomed Eng
– volume: 93
  start-page: 6730
  year: 2003
  end-page: 6732
  article-title: Conductivity tensor imaging of the brain using diffusion‐weighted magnetic resonance imaging
  publication-title: J Appl Phys
– volume: 13
  start-page: 769
  year: 2001
  end-page: 780
  article-title: Comparison of gradient encoding schemes for diffusion‐tensor MRI
  publication-title: J Magn Reson Imaging
– volume: 13
  start-page: 386
  year: 1965
  end-page: 401
  article-title: Specific impedance of cerebral white matter
  publication-title: Exp Neurol
– volume: 137
  start-page: 67
  year: 1999
  end-page: 82
  article-title: A comparative study of acquisition schemes for diffusion tensor imaging using MRI
  publication-title: J Magn Reson
– volume: 380
  start-page: 509
  year: 1996
  end-page: 512
  article-title: Three‐dimensional electrical impedance tomography
  publication-title: Nature
– volume: 7
  start-page: 144
  year: 1963
  end-page: 152
  article-title: Specific impedance of rabbit cerebral cortex
  publication-title: Exp Neurol
– volume: 45
  start-page: 377
  year: 1955
  end-page: 392
  article-title: Some relations between resistivity and electrical activity in the cerebral cortex of the cat
  publication-title: J Cell Physiol
– volume: 39
  start-page: 154
  year: 1992
  end-page: 158
  article-title: Computation of the potential distribution in a four‐layer anisotropic concentric spherical volume conductor
  publication-title: IEEE Trans Biomed Eng
– volume: 177
  start-page: 61
  year: 1979
  end-page: 82
  article-title: Conductivity in the somatosensory cortex of the cat—Evidence for cortical anisotropy
  publication-title: Brain Res
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  article-title: An algorithm for least‐squares estimations of nonlinear parameters
  publication-title: J Soc Ind Appl Math
– volume: 48
  start-page: 765
  year: 2002
  end-page: 770
  article-title: Evidence that both fast and slow water ADC components arise from intracellular space
  publication-title: Magn Reson Med
– volume: 36
  start-page: 847
  year: 1996
  end-page: 857
  article-title: Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion‐weighted imaging
  publication-title: Magn Reson Med
– volume: 29
  start-page: 125
  year: 1993
  end-page: 129
  article-title: Molecular self‐diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion spectroscopy
  publication-title: Magn Reson Med
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI
  publication-title: J Magn Reson B
– volume: 161
  start-page: 784
  year: 1968
  end-page: 786
  article-title: Magnetoencephalography: Evidence of magnetic fields produced by alpha‐rhythm currents
  publication-title: Science
– volume: 47
  start-page: 623
  year: 2002
  end-page: 628
  article-title: In vivo mapping of the fast and slow diffusion tensors in human brain
  publication-title: Magn Reson Med
– volume: 27
  start-page: 501
  year: 1982
  end-page: 513
  article-title: Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data
  publication-title: Phys Med Biol
– volume: 41
  start-page: 4203
  year: 2005
  end-page: 4205
  article-title: Magnetic resonance imaging of electrical conductivity in the human brain
  publication-title: IEEE Trans Magn
– ident: e_1_2_1_8_1
  doi: 10.1002/mrm.10118
– ident: e_1_2_1_7_1
  doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A
– volume-title: The rat brain
  year: 1998
  ident: e_1_2_1_32_1
– ident: e_1_2_1_40_1
  doi: 10.1190/1.1441215
– ident: e_1_2_1_43_1
  doi: 10.1063/1.367599
– ident: e_1_2_1_13_1
  doi: 10.21236/ADA303903
– ident: e_1_2_1_21_1
  doi: 10.1016/0167-2738(94)90323-9
– ident: e_1_2_1_42_1
  doi: 10.1088/0031-9155/27/4/002
– ident: e_1_2_1_23_1
  doi: 10.1002/mrm.10685
– ident: e_1_2_1_5_1
  doi: 10.1006/jmrb.1996.0086
– ident: e_1_2_1_19_1
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– volume: 205
  start-page: 203
  year: 1963
  ident: e_1_2_1_44_1
  article-title: Specific resistance of rabbit's cortical tissue
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1963.205.1.203
– ident: e_1_2_1_45_1
  doi: 10.1002/nbm.1940070115
– ident: e_1_2_1_46_1
  doi: 10.1109/TBME.2008.923159
– volume: 9
  start-page: 429
  year: 2006
  ident: e_1_2_1_6_1
  article-title: Predicting the effects of deep brain stimulation with diffusion tensor based electric field models
  publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
– ident: e_1_2_1_26_1
  doi: 10.1088/0967-3334/27/5/S08
– ident: e_1_2_1_24_1
  doi: 10.1137/0111030
– ident: e_1_2_1_29_1
  doi: 10.1016/0014-4886(65)90126-3
– ident: e_1_2_1_4_1
  doi: 10.1111/j.1749-6632.1997.tb46192.x
– ident: e_1_2_1_15_1
  doi: 10.1002/jmri.1107
– ident: e_1_2_1_34_1
– ident: e_1_2_1_41_1
  doi: 10.1063/1.373579
– ident: e_1_2_1_31_1
  doi: 10.1006/jmre.1998.1673
– ident: e_1_2_1_47_1
  doi: 10.1016/S0927-7757(01)00689-6
– ident: e_1_2_1_35_1
  doi: 10.1109/79.962276
– ident: e_1_2_1_10_1
  doi: 10.1016/0014-4886(69)90149-6
– ident: e_1_2_1_9_1
  doi: 10.1126/science.161.3843.784
– ident: e_1_2_1_33_1
  doi: 10.1016/S0014-4886(63)80005-9
– ident: e_1_2_1_39_1
  doi: 10.1109/TMAG.2005.854804
– ident: e_1_2_1_14_1
  doi: 10.1007/BF02474537
– ident: e_1_2_1_25_1
  doi: 10.1038/380509a0
– ident: e_1_2_1_28_1
  doi: 10.1088/0967-3334/25/1/038
– ident: e_1_2_1_37_1
  doi: 10.1063/1.1454987
– ident: e_1_2_1_20_1
  doi: 10.1021/jp020510a
– ident: e_1_2_1_36_1
  doi: 10.1002/mrm.10301
– ident: e_1_2_1_16_1
  doi: 10.1002/mrm.10682
– ident: e_1_2_1_12_1
  doi: 10.1002/jcp.1030450305
– ident: e_1_2_1_49_1
  doi: 10.1109/10.121646
– ident: e_1_2_1_27_1
  doi: 10.1002/mrm.1910290123
– ident: e_1_2_1_22_1
  doi: 10.1063/1.368377
– ident: e_1_2_1_2_1
  doi: 10.1007/s10548-006-0006-x
– ident: e_1_2_1_18_1
  doi: 10.1016/0006-8993(79)90918-1
– ident: e_1_2_1_11_1
  doi: 10.1002/mrm.1910370117
– ident: e_1_2_1_48_1
  doi: 10.1109/20.800775
– ident: e_1_2_1_17_1
  doi: 10.1109/10.605429
– ident: e_1_2_1_38_1
  doi: 10.1063/1.1544446
– ident: e_1_2_1_30_1
  doi: 10.1002/mrm.1910360607
– volume-title: Physical chemistry
  year: 1998
  ident: e_1_2_1_3_1
SSID ssj0008803
Score 1.976718
Snippet Conductivity tensor maps of the rat brain were obtained using diffusion magnetic resonance imaging (MRI). Signal attenuations in the cortex and the corpus...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Algorithms
Animals
Anisotropy
Brain - physiology
Brain Mapping - methods
Cerebral Cortex - physiology
conductivity
Corpus Callosum - physiology
Diffusion Magnetic Resonance Imaging - methods
Electric Conductivity
magnetic resonance
Male
Models, Neurological
Rats
Rats, Wistar
Title Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI
URI https://api.istex.fr/ark:/67375/WNG-PQ0324G2-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbem.20505
https://www.ncbi.nlm.nih.gov/pubmed/19437459
https://www.proquest.com/docview/67535391
https://www.proquest.com/docview/746058646
Volume 30
WOSCitedRecordID wos000269141800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-186X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008803
  issn: 0197-8462
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC2FGUBcWBKWYQkWQhGXVtxe2tPilEAmIM2MQpTA3FpeLyTdqCcD5MYn8I18CbZ7iSIlEhI3H6oldy2usqvqFcBrwaX3PIolUmc4Yc5micRKJxgbYozLbB4BTD9PxXw-XizygzV42_XCNPgQ_YNbsIx4XgcDl2q5fQEaqmxoJOcBv3RIvN6yAQzfH06Op_1B7FWTNt3S_iBmGemAhTDZ7j--5I6GgbM_r4o1L4eu0fdM7v3Xru_D3TbkRDuNjjyANVuuw8ZO6a_bp-doC8Ui0Pi6vg63drvV7Vmbdd-Ao2n148-v365uyq7Pkb9DB5jYOHcChRL4qkaVQ16ZkAojJ9BZFOcShVKvurYGhS4WFIaxrMLrHJodfnwIx5O9o3cfknYaQ6IZz3kiKcu1zXPDnXZ8rLAVSqdWYIe1EqnDgkguCHYkJO-Yc8ZpH39YojObck3pIxiUVWmfAHKOSOYdoXJWM2XGUjuWmtRRKowjho3gTSeUQrdQ5WFixknRgCyTwrOxiGwcwaue9FuDz3EV0VaUbE8h66-hoE3w4st8vzj4hH1YuU8KT_iyE33hzSzkTmRpq9XSU3PKaZ6OAF1DIWKGOWPZCB43SnOxoZxR4Zno_yvqxvU7LXb3ZnHx9N9Jn8GdJsUVCt-ew-CsXtkXcFN_97KuN-GGWIw3W9P4CxJdEPA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6h3b4ufUBLty-sqkK9RDiOHW-kXqBlATW7omgp3Kz4dWmboMC25dafwG_kl9R2HggJpEq9-TCRnHl4xp6ZbwDecVY4zyNpVKgUR9SaNCqwVBHGmmhtU5MFANOvOZ_NxsfH2f4SfOh6YRp8iP7BzVtGOK-9gfsH6Y0r1FBpfCc58wCmQ-rUiA1g-Olgcpj3J7HTzaRpl3YnMU1JhyyEyUb_8TV_NPSs_X1TsHk9dg3OZ_Lo_7b9GB62QSfabLTkCSyZchlWNkt34f5xjtZRKAMN7-vLcHerW92btnn3FZjn1a_LPxe2bgqvz5G7RXug2DB5Avki-KpGlUVOnZD0QyfQWRDoKfLFXnVtNPJ9LMiPY1n49zk0Pdh7CoeT7fnH3aidxxApyjIWFQnNlMkyzayybCyx4VLFhmOLleSxxZwUjBNsiU_fUWu1VS4CMUSlJmYqSZ7BoKxK8xyQtaSgzhVKaxSVelwoS2Md2yTh2hJNR_C-k4pQLVi5n5nxXTQwy0Q4NorAxhG87UlPGoSOm4jWg2h7iqL-5kvaOBNHsx2x_wW7wHKHCEe41sleOEPz2ZOiNNXi1FGzhCVZPAJ0CwUPOeaUpiNYbbTmakMZTbhjovuvoBy371RsbU_D4sW_k67B_d35NBf53uzzS3jQJLx8GdwrGJzVC_Ma7qifTu71m9ZC_gLwWxP4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4htkW99AF9bF9YVYV6iXAcO95IvUBhKeruaoug5WYltudSSFBg23LrT-hv7C-p7TwQEkiVevNhIjnz8Iw9M98AvJUid56n4FGuUxpxtGmU00JHlBpmDKY2CwCmXyZyNhsdH2fzJXjf9cI0-BD9g5u3jHBeewO3ZwY3r1BDC-s7yYUHMB1wkaXOLAc7B-OjSX8SO91MmnZpdxLzlHXIQpRt9h9f80cDz9qfNwWb12PX4HzGD_5v2w_hfht0kq1GSx7Bki1XYW2rdBfu00uyQUIZaHhfX4W7291qZdrm3dfgcFL9-PPrN9ZN4fUlcbdoDxQbJk8QXwRf1aRC4tSJFH7oBLkIAj0nvtirrq0hvo-F-HEsC_8-R6YH-4_haLx7-OFj1M5jiLTjr4jyhGfaZpkRqFGMCmploWMrKVJdyBipZLmQjCLz6TuOaFC7CMQyndpY6CR5AstlVdpnQBBZzp0rLNBqXphRrpHHJsYkkQaZ4UN410lF6Ras3M_MOFENzDJTjo0qsHEIb3rSswah4yaijSDaniKvv_mSNinU19memn-mLrDcY8oRrneyV87QfPYkL221OHfUIhFJFg-B3EIhQ4455ekQnjZac7WhjCfSMdH9V1CO23eqtnenYfH830nXYWW-M1aT_dmnF3CvyXf5KriXsHxRL-wruKO_O7HXr1sD-QtfJhNz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90frequency+conductivity+tensor+of+rat+brain+tissues+inferred+from+diffusion+MRI&rft.jtitle=Bioelectromagnetics&rft.au=Sekino%2C+Masaki&rft.au=Ohsaki%2C+Hiroyuki&rft.au=Yamaguchi%E2%80%90Sekino%2C+Sachiko&rft.au=Iriguchi%2C+Norio&rft.date=2009-09-01&rft.issn=0197-8462&rft.eissn=1521-186X&rft.volume=30&rft.issue=6&rft.spage=489&rft.epage=499&rft_id=info:doi/10.1002%2Fbem.20505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bem_20505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-8462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-8462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-8462&client=summon