Two-stage parameter estimation algorithms for Box–Jenkins systems

A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET signal processing Jg. 7; H. 8; S. 646 - 654
Hauptverfasser: Ding, Feng, Duan, Honghong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Stevenage The Institution of Engineering and Technology 01.10.2013
Institution of Engineering and Technology
John Wiley & Sons, Inc
Schlagworte:
ISSN:1751-9675, 1751-9683, 1751-9683
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1751-9675
1751-9683
1751-9683
DOI:10.1049/iet-spr.2012.0183