Two-stage parameter estimation algorithms for Box–Jenkins systems

A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the para...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET signal processing Ročník 7; číslo 8; s. 646 - 654
Hlavní autoři: Ding, Feng, Duan, Honghong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.10.2013
Institution of Engineering and Technology
John Wiley & Sons, Inc
Témata:
ISSN:1751-9675, 1751-9683, 1751-9683
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A two-stage recursive least-squares identification method and a two-stage multi-innovation stochastic gradient method are derived for Box–Jenkins (BJ) systems. The key is to decompose a BJ system into two subsystems, one containing the parameters of the system model and the other containing the parameters of the noise model, and then to estimate the parameters of the system model and the noise model, respectively. The simulation examples indicate that the proposed algorithms can generate highly accurate parameter estimates and require small computational burden.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1751-9675
1751-9683
1751-9683
DOI:10.1049/iet-spr.2012.0183