Bounds on the largest singular value of a matrix and the convergence of simultaneous and block-iterative algorithms for sparse linear systems

We obtain the following upper bounds for the eigenvalues of the matrix A†A. For any a in the interval [0, 2] let and ca and ra the maxima of the caj and rai, respectively. Then no eigenvalue of the matrix A†A exceeds the maximum of over all i, nor the maximum of over all j. Therefore, no eigenvalue...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International transactions in operational research Ročník 16; číslo 4; s. 465 - 479
Hlavný autor: Byrne, Charles
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.07.2009
Predmet:
ISSN:0969-6016, 1475-3995
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We obtain the following upper bounds for the eigenvalues of the matrix A†A. For any a in the interval [0, 2] let and ca and ra the maxima of the caj and rai, respectively. Then no eigenvalue of the matrix A†A exceeds the maximum of over all i, nor the maximum of over all j. Therefore, no eigenvalue of A†A exceeds cara. Using these bounds, it follows that, for the matrix G with entries no eigenvalue of G†G exceeds one, provided that, for some a in the interval [0, 2], we have and Using this result, we obtain convergence theorems for several iterative algorithms for solving the problem Ax=b, including the CAV, BICAV, CARP1, SART, SIRT, and the block‐iterative DROP and SART methods.
Bibliografia:ark:/67375/WNG-4G16V2LG-T
ArticleID:ITOR692
istex:81C69F834E25120A443565DE711048C62BCF0B8D
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0969-6016
1475-3995
DOI:10.1111/j.1475-3995.2009.00692.x