Transient inhibition of lysosomal functions potentiates nucleic acid vaccines

Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted ti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 120; číslo 44; s. e2306465120
Hlavní autori: Wang, Chunxi, Karlsson, Amelia, Oguin, 3rd, Thomas H, Macintyre, Andrew N, Sempowski, Gregory D, McCarthy, Kevin R, Wang, Yifei, Moody, M Anthony, Yuan, Fan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 31.10.2023
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1091-6490
1091-6490
DOI:10.1073/pnas.2306465120