Computing the Homology of Semialgebraic Sets. I: Lax Formulas

We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of closed semialgebraic sets given by Boolean formulas without negations over lax polynomial inequalities. The algorithm works in weak exponential time. This means that outside a subset of data h...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 20; číslo 1; s. 71 - 118
Hlavní autori: Bürgisser, Peter, Cucker, Felipe, Tonelli-Cueto, Josué
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.02.2020
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We describe and analyze an algorithm for computing the homology (Betti numbers and torsion coefficients) of closed semialgebraic sets given by Boolean formulas without negations over lax polynomial inequalities. The algorithm works in weak exponential time. This means that outside a subset of data having exponentially small measure, the cost of the algorithm is single exponential in the size of the data. All previous algorithms solving this problem have doubly exponential complexity. Our algorithm thus represents an exponential acceleration over state-of-the-art algorithms for all input data outside a set that vanishes exponentially fast.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-019-09418-y