Integer partitions detect the primes

We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 121; číslo 39; s. e2409417121
Hlavní autoři: Craig, William, van Ittersum, Jan-Willem, Ono, Ken
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 24.09.2024
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
AbstractList We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer n ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer n ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
Author van Ittersum, Jan-Willem
Craig, William
Ono, Ken
Author_xml – sequence: 1
  givenname: William
  surname: Craig
  fullname: Craig, William
  organization: Department of Mathematics, United States Naval Academy, Annapolis, MD 21402
– sequence: 2
  givenname: Jan-Willem
  orcidid: 0000-0003-1541-0232
  surname: van Ittersum
  fullname: van Ittersum, Jan-Willem
  organization: Department of Mathematics, United States Naval Academy, Annapolis, MD 21402
– sequence: 3
  givenname: Ken
  surname: Ono
  fullname: Ono, Ken
  organization: Department of Mathematics, University of Virginia, Charlottesville, VA 22904
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39302965$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAUhS1URB8ws6EMDCwp18_YI6p4VKrUpcyRY99AUOKE2Bn49xRRJKZzhk9H51uSWegDEnJNYU2h4PdDsHHNBBhBC8roGVlQMDRXwsDsX5-TZYwfAGCkhgsy54YDM0ouyO02JHzDMRvsmJrU9CFmHhO6lKV3zIax6TBekvPathGvTrkir0-Ph81Lvts_bzcPu9wJqVPuHEPjvMTKKYrKIC8qYalHh5qbGgwwK4Eh00CN01I4rjwIW9QCubeWrcjd7-4w9p8TxlR2TXTYtjZgP8WSH50lSKbVEb05oVPVoS9_jtrxq_wzY99tflFy
CitedBy_id crossref_primary_10_1007_s00013_025_02109_x
crossref_primary_10_1007_s11139_025_01126_2
crossref_primary_10_1007_s40687_025_00541_7
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.2409417121
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 39302965
Genre Journal Article
GrantInformation_xml – fundername: Thomas Jefferson Fund
  grantid: NA
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 281071066
– fundername: National Science Foundation (NSF)
  grantid: DMS-2002265
– fundername: EC | European Research Council (ERC)
  grantid: 101001179
– fundername: National Science Foundation (NSF)
  grantid: DMS-2055118
– fundername: EC | ERC | HORIZON EUROPE European Research Council (ERC)
  grantid: 101001179
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
29P
7X8
H13
HYE
W8F
WOW
ID FETCH-LOGICAL-c458t-cc2e9cd5ebc61e69e37b4a1dece839f0902a502e28019c854c36d04a7f4e3daa2
IEDL.DBID 7X8
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392568800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Wed Oct 01 13:38:51 EDT 2025
Sat Mar 22 01:33:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords partitions
quasimodular forms
primes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-cc2e9cd5ebc61e69e37b4a1dece839f0902a502e28019c854c36d04a7f4e3daa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1541-0232
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11441547
PMID 39302965
PQID 3107505286
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3107505286
pubmed_primary_39302965
PublicationCentury 2000
PublicationDate 2024-09-24
PublicationDateYYYYMMDD 2024-09-24
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
SSID ssj0009580
Score 2.508253
Snippet We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e2409417121
Title Integer partitions detect the primes
URI https://www.ncbi.nlm.nih.gov/pubmed/39302965
https://www.proquest.com/docview/3107505286
Volume 121
WOSCitedRecordID wos001392568800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWAByrO8FKQOMJjGb3tCCFGxUHUAqVtkOw5iSUNT-P3YSSpYkJBYvFmyznfn7-6s7wMYWhFJ1plBolChQDFKI82ZRdgYqxiPRYdqxCbkZKJmMz3tGm51961ylRObRJ3PXeyRjwIMkVF0TYnb6h1F1ag4Xe0kNNahRwOUiYEpZ-oH6a5q2Qg0RoLpdEXtI-moKk19Q2JxgyUm-Hd82bwz453_nnAXtjuEmdy1LtGHNV_uQb-L4Tq56oimr_dhGNuBr36RVNF_GgdMch-nCkmAhUkVmf_rA3gZPzzfP6JONQE5xtUSOUe8djn31gnshfZUWmZw7p0PYKiI_zANT4kn4W3STnHmqMhTZmTBPM2NIYewUc5LfwwJYSbUV5JZV7AQ69rmlvKCkFSS1NDCDuByZYkseGUcNZjSzz_q7NsWAzhqzZlVLX1GRjVNiRb85A-7T2GLBBSBmjHQGfSKEJP-HDbd5_KtXlw01x3WyfTpC2x8ssU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+partitions+detect+the+primes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Craig%2C+William&rft.au=van+Ittersum%2C+Jan-Willem&rft.au=Ono%2C+Ken&rft.date=2024-09-24&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=121&rft.issue=39&rft.spage=e2409417121&rft_id=info:doi/10.1073%2Fpnas.2409417121&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon