Integer partitions detect the primes
We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 39; p. e2409417121 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
24.09.2024
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer
≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text]. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1091-6490 1091-6490 |
| DOI: | 10.1073/pnas.2409417121 |