Integer partitions detect the primes

We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 39; p. e2409417121
Main Authors: Craig, William, van Ittersum, Jan-Willem, Ono, Ken
Format: Journal Article
Language:English
Published: United States 24.09.2024
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
AbstractList We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer n ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer n ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of Schneider, we show that the primes are the solutions to special equations in partition functions. For example, an integer ≥ 2 is prime if and only if [Formula: see text]where the [Formula: see text] are MacMahon's well-studied partition functions. More generally, for MacMahonesque partition functions [Formula: see text] we prove that there are infinitely many such prime detecting equations with constant coefficients, such as [Formula: see text].
Author van Ittersum, Jan-Willem
Craig, William
Ono, Ken
Author_xml – sequence: 1
  givenname: William
  surname: Craig
  fullname: Craig, William
  organization: Department of Mathematics, United States Naval Academy, Annapolis, MD 21402
– sequence: 2
  givenname: Jan-Willem
  orcidid: 0000-0003-1541-0232
  surname: van Ittersum
  fullname: van Ittersum, Jan-Willem
  organization: Department of Mathematics, United States Naval Academy, Annapolis, MD 21402
– sequence: 3
  givenname: Ken
  surname: Ono
  fullname: Ono, Ken
  organization: Department of Mathematics, University of Virginia, Charlottesville, VA 22904
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39302965$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAUhS1URB8ws6EMDCwp18_YI6p4VKrUpcyRY99AUOKE2Bn49xRRJKZzhk9H51uSWegDEnJNYU2h4PdDsHHNBBhBC8roGVlQMDRXwsDsX5-TZYwfAGCkhgsy54YDM0ouyO02JHzDMRvsmJrU9CFmHhO6lKV3zIax6TBekvPathGvTrkir0-Ph81Lvts_bzcPu9wJqVPuHEPjvMTKKYrKIC8qYalHh5qbGgwwK4Eh00CN01I4rjwIW9QCubeWrcjd7-4w9p8TxlR2TXTYtjZgP8WSH50lSKbVEb05oVPVoS9_jtrxq_wzY99tflFy
CitedBy_id crossref_primary_10_1007_s00013_025_02109_x
crossref_primary_10_1007_s11139_025_01126_2
crossref_primary_10_1007_s40687_025_00541_7
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.2409417121
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 39302965
Genre Journal Article
GrantInformation_xml – fundername: Thomas Jefferson Fund
  grantid: NA
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: 281071066
– fundername: National Science Foundation (NSF)
  grantid: DMS-2002265
– fundername: EC | European Research Council (ERC)
  grantid: 101001179
– fundername: National Science Foundation (NSF)
  grantid: DMS-2055118
– fundername: EC | ERC | HORIZON EUROPE European Research Council (ERC)
  grantid: 101001179
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
29P
7X8
H13
HYE
W8F
WOW
ID FETCH-LOGICAL-c458t-cc2e9cd5ebc61e69e37b4a1dece839f0902a502e28019c854c36d04a7f4e3daa2
IEDL.DBID 7X8
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001392568800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Wed Oct 01 13:38:51 EDT 2025
Sat Mar 22 01:33:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords partitions
quasimodular forms
primes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-cc2e9cd5ebc61e69e37b4a1dece839f0902a502e28019c854c36d04a7f4e3daa2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1541-0232
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11441547
PMID 39302965
PQID 3107505286
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3107505286
pubmed_primary_39302965
PublicationCentury 2000
PublicationDate 2024-09-24
PublicationDateYYYYMMDD 2024-09-24
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
SSID ssj0009580
Score 2.508325
Snippet We show that integer partitions, the fundamental building blocks in additive number theory, detect prime numbers in an unexpected way. Answering a question of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage e2409417121
Title Integer partitions detect the primes
URI https://www.ncbi.nlm.nih.gov/pubmed/39302965
https://www.proquest.com/docview/3107505286
Volume 121
WOSCitedRecordID wos001392568800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMctoAwsQHmWl4LUAQbT-BXHE0KIigGqDoC6RY59RixJaAqfHztJBQsSEkumRLIud_Yvd5f_ITSUWmjgucV-lQ5z4RzWseHYBRhgxFrZ_OX68iAnk3Q2U9Mu4VZ3bZXLPbHZqG1pQo585DFEhqFraXJdveMwNSpUV7sRGquoxzzKhJYuOUt_iO6mrRqBIjjhKl5K-0g2qgpdX9HwcUMkoeR3vmzOmfHWf1e4jTY7woxuWpfooxUodlC_i-E6uuiEpi930TCkA19hHlXBfxoHjCyEqkLksTCqgvJ_vYeex3dPt_e4m5qADRfpAhtDQRkrIDcJgUQBkznXxIIBD0Mu9GFqEVOg_mxSJhXcsMTGXEvHgVmt6T5aK8oCDlHEjBFO-zsU1x6btLI6AR_guXQityQeoPOlJTLvlaHUoAsoP-rs2xYDdNCaM6ta-YyMKRZTlYijPzx9jDaopwjclIFOUM_5mIRTtG4-F2_1_Kx53f46mT5-AXLCtOY
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+partitions+detect+the+primes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Craig%2C+William&rft.au=van+Ittersum%2C+Jan-Willem&rft.au=Ono%2C+Ken&rft.date=2024-09-24&rft.eissn=1091-6490&rft.volume=121&rft.issue=39&rft.spage=e2409417121&rft_id=info:doi/10.1073%2Fpnas.2409417121&rft_id=info%3Apmid%2F39302965&rft_id=info%3Apmid%2F39302965&rft.externalDocID=39302965
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon