MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms

We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-build...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters Jg. 39; H. 2; S. 150 - 154
Hauptverfasser: Martí, Luis, García, Jesús, Berlanga, Antonio, Coello Coello, Carlos A., Molina, José M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier B.V 01.03.2011
Elsevier
Schlagworte:
ISSN:0167-6377, 1872-7468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that issue and therefore yields a better performance. Experiments are conducted in order to show from an empirical point of view the advantages of the new algorithm.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2011.01.002