Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey

We survey some of the recent advances in mean estimation and regression function estimation. In particular, we describe sub-Gaussian mean estimators for possibly heavy-tailed data in both the univariate and multivariate settings. We focus on estimators based on median-of-means techniques, but other...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Foundations of computational mathematics Ročník 19; číslo 5; s. 1145 - 1190
Hlavní autori: Lugosi, Gábor, Mendelson, Shahar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2019
Springer Nature B.V
Predmet:
ISSN:1615-3375, 1615-3383
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We survey some of the recent advances in mean estimation and regression function estimation. In particular, we describe sub-Gaussian mean estimators for possibly heavy-tailed data in both the univariate and multivariate settings. We focus on estimators based on median-of-means techniques, but other methods such as the trimmed-mean and Catoni’s estimators are also reviewed. We give detailed proofs for the cornerstone results. We dedicate a section to statistical learning problems—in particular, regression function estimation—in the presence of possibly heavy-tailed data.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-019-09427-x