Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey

We survey some of the recent advances in mean estimation and regression function estimation. In particular, we describe sub-Gaussian mean estimators for possibly heavy-tailed data in both the univariate and multivariate settings. We focus on estimators based on median-of-means techniques, but other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 19; H. 5; S. 1145 - 1190
Hauptverfasser: Lugosi, Gábor, Mendelson, Shahar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2019
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We survey some of the recent advances in mean estimation and regression function estimation. In particular, we describe sub-Gaussian mean estimators for possibly heavy-tailed data in both the univariate and multivariate settings. We focus on estimators based on median-of-means techniques, but other methods such as the trimmed-mean and Catoni’s estimators are also reviewed. We give detailed proofs for the cornerstone results. We dedicate a section to statistical learning problems—in particular, regression function estimation—in the presence of possibly heavy-tailed data.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-019-09427-x