FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking

Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 129; číslo 11; s. 3069 - 3087
Hlavní autoři: Zhang, Yifu, Wang, Chunyu, Wang, Xinggang, Zeng, Wenjun, Liu, Wenyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2021
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficiency. However, we find that the two tasks tend to compete with each other which need to be carefully addressed. In particular, previous works usually treat re-ID as a secondary task whose accuracy is heavily affected by the primary detection task. As a result, the network is biased to the primary detection task which is not fair to the re-ID task. To solve the problem, we present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet. Note that it is not a naive combination of CenterNet and re-ID. Instead, we present a bunch of detailed designs which are critical to achieve good tracking results by thorough empirical studies. The resulting approach achieves high accuracy for both detection and tracking. The approach outperforms the state-of-the-art methods by a large margin on several public datasets. The source code and pre-trained models are released at https://github.com/ifzhang/FairMOT .
AbstractList Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficiency. However, we find that the two tasks tend to compete with each other which need to be carefully addressed. In particular, previous works usually treat re-ID as a secondary task whose accuracy is heavily affected by the primary detection task. As a result, the network is biased to the primary detection task which is not fair to the re-ID task. To solve the problem, we present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet. Note that it is not a naive combination of CenterNet and re-ID. Instead, we present a bunch of detailed designs which are critical to achieve good tracking results by thorough empirical studies. The resulting approach achieves high accuracy for both detection and tracking. The approach outperforms the state-of-the-art methods by a large margin on several public datasets. The source code and pre-trained models are released at
Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficiency. However, we find that the two tasks tend to compete with each other which need to be carefully addressed. In particular, previous works usually treat re-ID as a secondary task whose accuracy is heavily affected by the primary detection task. As a result, the network is biased to the primary detection task which is not fair to the re-ID task. To solve the problem, we present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet. Note that it is not a naive combination of CenterNet and re-ID. Instead, we present a bunch of detailed designs which are critical to achieve good tracking results by thorough empirical studies. The resulting approach achieves high accuracy for both detection and tracking. The approach outperforms the state-of-the-art methods by a large margin on several public datasets. The source code and pre-trained models are released at https://github.com/ifzhang/FairMOT.
Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object detection and re-ID in a single network is appealing since it allows joint optimization of the two tasks and enjoys high computation efficiency. However, we find that the two tasks tend to compete with each other which need to be carefully addressed. In particular, previous works usually treat re-ID as a secondary task whose accuracy is heavily affected by the primary detection task. As a result, the network is biased to the primary detection task which is not fair to the re-ID task. To solve the problem, we present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet. Note that it is not a naive combination of CenterNet and re-ID. Instead, we present a bunch of detailed designs which are critical to achieve good tracking results by thorough empirical studies. The resulting approach achieves high accuracy for both detection and tracking. The approach outperforms the state-of-the-art methods by a large margin on several public datasets. The source code and pre-trained models are released at https://github.com/ifzhang/FairMOT .
Audience Academic
Author Zeng, Wenjun
Wang, Xinggang
Zhang, Yifu
Wang, Chunyu
Liu, Wenyu
Author_xml – sequence: 1
  givenname: Yifu
  surname: Zhang
  fullname: Zhang, Yifu
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Chunyu
  surname: Wang
  fullname: Wang, Chunyu
  organization: Microsoft Research Asia
– sequence: 3
  givenname: Xinggang
  orcidid: 0000-0001-6732-7823
  surname: Wang
  fullname: Wang, Xinggang
  email: xgwang@hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Wenjun
  surname: Zeng
  fullname: Zeng, Wenjun
  organization: Microsoft Research Asia
– sequence: 5
  givenname: Wenyu
  surname: Liu
  fullname: Liu, Wenyu
  organization: Huazhong University of Science and Technology
BookMark eNp9kU1rXCEUhqWk0EnaP9CVkFUWpser98PsQj7aQMJAOqVLca7HqZMb70QdSP99nbmFkCyCC_HwPB497yE5CGNAQr5yOOUA7bfEedUIBhVnwGsumPxAZrxuBeMS6gMyA1UBqxvFP5HDlNYAUHWVmJHf18bHu_nijM4DzX-Q7s4BU6Kjo5eYsc9-DNQES--ReYshe-d7s6_6QO-2Q_abAel8uS4sXUTTP_iw-kw-OjMk_PJ_PyK_rq8WFz_Y7fz7zcX5Letl3WUmWwALHVdLIcUS28YZK5RtlFXSoXMADiSCMiBbq4zkrTHApZXOoeGoxBE5nu7dxPFpiynr9biNobTUVd1VTdPIekedTtTKDKh9cGMu7yzL4qPvyyidL_XzplWijIXXRTh5JRQm43NemW1K-ubn_Wu2m9g-jilFdLr3eT-g0sQPmoPeZaSnjHTJSO8z0rKo1Rt1E_2jiX_fl8QkpQKHFcaXL79j_QPaDaOg
CitedBy_id crossref_primary_10_3390_app12094429
crossref_primary_10_1109_ACCESS_2024_3429171
crossref_primary_10_48084_etasr_9529
crossref_primary_10_1007_s11554_024_01513_w
crossref_primary_10_1016_j_eswa_2025_126846
crossref_primary_10_1038_s41598_025_88149_3
crossref_primary_10_3390_s23177613
crossref_primary_10_1109_TII_2024_3366983
crossref_primary_10_1016_j_compag_2025_110887
crossref_primary_10_1016_j_oceaneng_2024_117243
crossref_primary_10_1109_JIOT_2023_3235148
crossref_primary_10_3390_app14167071
crossref_primary_10_1109_JSEN_2024_3391510
crossref_primary_10_1016_j_neucom_2024_128026
crossref_primary_10_1016_j_ecoinf_2022_101794
crossref_primary_10_3390_s23208439
crossref_primary_10_1007_s11227_025_07730_9
crossref_primary_10_26599_BDMA_2025_9020024
crossref_primary_10_1109_ACCESS_2023_3336592
crossref_primary_10_1109_TCSVT_2024_3403166
crossref_primary_10_1038_s41598_022_15000_4
crossref_primary_10_1111_mice_13295
crossref_primary_10_3390_rs16010070
crossref_primary_10_1038_s41598_025_07276_z
crossref_primary_10_1016_j_compag_2025_110535
crossref_primary_10_1109_TIP_2022_3203607
crossref_primary_10_1016_j_aquaeng_2022_102246
crossref_primary_10_3390_app15179727
crossref_primary_10_3390_s22228650
crossref_primary_10_1007_s11227_025_07381_w
crossref_primary_10_1109_TCSS_2023_3293882
crossref_primary_10_1007_s11263_025_02439_x
crossref_primary_10_3390_app15148089
crossref_primary_10_1016_j_engappai_2025_110198
crossref_primary_10_1109_TGRS_2024_3385406
crossref_primary_10_1109_TRO_2023_3299517
crossref_primary_10_1177_03611981231170591
crossref_primary_10_1088_1742_6596_2816_1_012097
crossref_primary_10_1109_JSEN_2024_3379990
crossref_primary_10_3390_fi16060179
crossref_primary_10_1016_j_optlaseng_2025_109125
crossref_primary_10_1109_TIP_2025_3592524
crossref_primary_10_3390_app14031136
crossref_primary_10_1007_s11263_022_01711_8
crossref_primary_10_3390_rs16173347
crossref_primary_10_1016_j_photonics_2024_101318
crossref_primary_10_1109_JSEN_2025_3596067
crossref_primary_10_3390_s24123862
crossref_primary_10_3390_vetsci12070616
crossref_primary_10_1016_j_oceaneng_2024_118560
crossref_primary_10_1016_j_sigpro_2025_110058
crossref_primary_10_1109_JIOT_2023_3317422
crossref_primary_10_1016_j_compag_2024_109275
crossref_primary_10_3390_s22145267
crossref_primary_10_3390_s24072185
crossref_primary_10_1109_TIM_2024_3449952
crossref_primary_10_3390_s23073782
crossref_primary_10_3390_app122110741
crossref_primary_10_1016_j_jvcir_2024_104144
crossref_primary_10_1049_ipr2_13053
crossref_primary_10_1049_ipr2_13297
crossref_primary_10_1109_TMM_2023_3279670
crossref_primary_10_1109_ACCESS_2024_3411617
crossref_primary_10_1109_TIP_2022_3227814
crossref_primary_10_1016_j_birob_2024_100203
crossref_primary_10_1016_j_sysarc_2025_103349
crossref_primary_10_1016_j_trip_2025_101366
crossref_primary_10_3390_ani15111543
crossref_primary_10_3390_app15095119
crossref_primary_10_1016_j_eswa_2024_124391
crossref_primary_10_1142_S0218001424520165
crossref_primary_10_3390_s22207943
crossref_primary_10_1109_TGRS_2025_3608713
crossref_primary_10_3390_agriculture12111907
crossref_primary_10_1007_s10489_024_05682_w
crossref_primary_10_1007_s11042_024_20360_2
crossref_primary_10_1007_s11042_023_17983_2
crossref_primary_10_1109_TPAMI_2024_3457886
crossref_primary_10_1109_TIP_2022_3226414
crossref_primary_10_1007_s00521_025_11076_x
crossref_primary_10_1007_s11554_024_01514_9
crossref_primary_10_1007_s13042_023_02070_7
crossref_primary_10_1007_s11760_025_04504_x
crossref_primary_10_1109_ACCESS_2023_3296731
crossref_primary_10_3390_electronics14112238
crossref_primary_10_1007_s00371_025_03890_0
crossref_primary_10_1007_s00371_024_03544_7
crossref_primary_10_1109_TIP_2022_3192706
crossref_primary_10_1016_j_trpro_2023_11_758
crossref_primary_10_3389_fpls_2022_1047356
crossref_primary_10_1109_JSEN_2024_3435856
crossref_primary_10_1016_j_eswa_2025_126414
crossref_primary_10_3390_rs17030371
crossref_primary_10_1109_TPAMI_2025_3560033
crossref_primary_10_1109_TITS_2024_3360875
crossref_primary_10_1109_ACCESS_2025_3596684
crossref_primary_10_1109_LRA_2022_3187264
crossref_primary_10_1038_s41598_024_75581_0
crossref_primary_10_3390_s22228693
crossref_primary_10_1109_ACCESS_2024_3503673
crossref_primary_10_1109_ACCESS_2022_3196492
crossref_primary_10_3390_rs17132167
crossref_primary_10_1007_s00371_024_03300_x
crossref_primary_10_1109_TGRS_2023_3336665
crossref_primary_10_1007_s10044_025_01492_z
crossref_primary_10_1109_ACCESS_2022_3220635
crossref_primary_10_1109_TPAMI_2022_3163709
crossref_primary_10_1109_TCSVT_2022_3202574
crossref_primary_10_3389_fpls_2022_1003243
crossref_primary_10_1007_s00371_023_03207_z
crossref_primary_10_1016_j_eswa_2025_126772
crossref_primary_10_1109_ACCESS_2023_3283411
crossref_primary_10_1371_journal_pone_0331850
crossref_primary_10_1016_j_eswa_2025_127877
crossref_primary_10_1007_s11063_023_11397_9
crossref_primary_10_3390_electronics13010091
crossref_primary_10_1109_JSTARS_2023_3296451
crossref_primary_10_1109_TCSVT_2022_3224699
crossref_primary_10_1109_JSEN_2024_3455572
crossref_primary_10_1109_TMM_2023_3256761
crossref_primary_10_1016_j_atech_2025_101408
crossref_primary_10_1016_j_compag_2025_110742
crossref_primary_10_1109_TITS_2023_3316691
crossref_primary_10_1016_j_engappai_2025_111494
crossref_primary_10_1109_ACCESS_2025_3551672
crossref_primary_10_1109_COMST_2023_3323091
crossref_primary_10_1109_TIP_2024_3403497
crossref_primary_10_1109_TPAMI_2024_3350380
crossref_primary_10_1155_2023_9959178
crossref_primary_10_1007_s11227_022_04776_x
crossref_primary_10_1109_TITS_2023_3285651
crossref_primary_10_1016_j_jvcir_2022_103750
crossref_primary_10_1007_s10489_024_06037_1
crossref_primary_10_1109_ACCESS_2025_3554706
crossref_primary_10_1109_TIV_2022_3216102
crossref_primary_10_1109_ACCESS_2025_3581041
crossref_primary_10_1155_2022_6177973
crossref_primary_10_1016_j_jvcir_2024_104064
crossref_primary_10_1109_ACCESS_2025_3602953
crossref_primary_10_1049_ipr2_13099
crossref_primary_10_1007_s11801_023_2070_9
crossref_primary_10_1016_j_jag_2023_103295
crossref_primary_10_1007_s00530_023_01052_7
crossref_primary_10_1007_s11760_025_04395_y
crossref_primary_10_1016_j_knosys_2024_112075
crossref_primary_10_1063_5_0109807
crossref_primary_10_1016_j_engappai_2025_111265
crossref_primary_10_3390_s25103013
crossref_primary_10_1016_j_eswa_2025_127881
crossref_primary_10_1038_s41598_025_88924_2
crossref_primary_10_3390_rs14164106
crossref_primary_10_3390_ai5030047
crossref_primary_10_1007_s11042_024_20296_7
crossref_primary_10_1109_ACCESS_2024_3431244
crossref_primary_10_1109_ACCESS_2025_3546818
crossref_primary_10_1016_j_patcog_2025_111623
crossref_primary_10_1049_ipr2_12576
crossref_primary_10_3390_electronics14163187
crossref_primary_10_1109_TMM_2024_3394683
crossref_primary_10_1016_j_autcon_2024_105389
crossref_primary_10_1109_TCSVT_2022_3182709
crossref_primary_10_1109_TGRS_2024_3383870
crossref_primary_10_1109_TMM_2023_3274369
crossref_primary_10_1155_2022_7437289
crossref_primary_10_1016_j_compeleceng_2024_109078
crossref_primary_10_1109_TIV_2022_3217490
crossref_primary_10_1109_ACCESS_2024_3362673
crossref_primary_10_1007_s11760_025_04723_2
crossref_primary_10_1016_j_imavis_2024_105317
crossref_primary_10_1109_ACCESS_2023_3287147
crossref_primary_10_1016_j_compag_2023_107871
crossref_primary_10_11361_journalcpij_58_187
crossref_primary_10_1016_j_compag_2023_108600
crossref_primary_10_1109_TITS_2023_3315222
crossref_primary_10_1016_j_compeleceng_2025_110116
crossref_primary_10_1007_s11760_024_03676_2
crossref_primary_10_3390_app12073334
crossref_primary_10_1016_j_compag_2022_107347
crossref_primary_10_1007_s12204_022_2540_4
crossref_primary_10_1109_JSEN_2023_3255924
crossref_primary_10_1109_TII_2023_3261890
crossref_primary_10_1109_TITS_2024_3504405
crossref_primary_10_3390_buildings14082324
crossref_primary_10_1109_TIP_2022_3166638
crossref_primary_10_1016_j_ins_2023_118967
crossref_primary_10_1109_TIM_2024_3385824
crossref_primary_10_1109_ACCESS_2025_3557947
crossref_primary_10_1590_0001_3765202520240623
crossref_primary_10_1016_j_imavis_2024_105303
crossref_primary_10_1016_j_neucom_2022_04_087
crossref_primary_10_3390_s22228922
crossref_primary_10_1109_TITS_2022_3147770
crossref_primary_10_1016_j_engappai_2022_105032
crossref_primary_10_1016_j_measurement_2024_114180
crossref_primary_10_1002_aisy_202500100
crossref_primary_10_1007_s11042_023_17297_3
crossref_primary_10_1007_s11633_022_1344_1
crossref_primary_10_1016_j_inffus_2025_103349
crossref_primary_10_1109_TCSVT_2023_3263884
crossref_primary_10_1007_s11760_024_03336_5
crossref_primary_10_1016_j_pmcj_2023_101860
crossref_primary_10_1371_journal_pone_0291538
crossref_primary_10_3390_rs15082088
crossref_primary_10_3390_app15136969
crossref_primary_10_1007_s11263_022_01678_6
crossref_primary_10_1109_ACCESS_2023_3327262
crossref_primary_10_3390_s23083993
crossref_primary_10_1109_TII_2024_3424329
crossref_primary_10_1016_j_imavis_2024_105336
crossref_primary_10_1109_TCSVT_2024_3524670
crossref_primary_10_1109_TITS_2023_3264796
crossref_primary_10_3390_agriculture14071158
crossref_primary_10_1016_j_imavis_2024_105217
crossref_primary_10_1007_s11760_025_04240_2
crossref_primary_10_1007_s00521_022_08079_3
crossref_primary_10_1109_TITS_2021_3136918
crossref_primary_10_1145_3735510
crossref_primary_10_1109_JSEN_2024_3522021
crossref_primary_10_1109_TSP_2024_3472068
crossref_primary_10_1007_s10341_025_01385_9
crossref_primary_10_1088_1742_6596_2547_1_012022
crossref_primary_10_3390_su15031950
crossref_primary_10_54097_2efrm195
crossref_primary_10_1016_j_patcog_2024_110369
crossref_primary_10_1016_j_patcog_2024_111330
crossref_primary_10_3390_rs17061014
crossref_primary_10_3390_electronics11071010
crossref_primary_10_1007_s11760_025_04748_7
crossref_primary_10_1016_j_media_2024_103438
crossref_primary_10_1109_JSTARS_2025_3582679
crossref_primary_10_3390_s24186015
crossref_primary_10_1007_s00371_024_03367_6
crossref_primary_10_1016_j_isprsjprs_2025_08_013
crossref_primary_10_1109_TCSVT_2025_3528971
crossref_primary_10_1016_j_seta_2022_102216
crossref_primary_10_3390_s22155688
crossref_primary_10_1016_j_trc_2025_105205
crossref_primary_10_1109_TIP_2025_3526066
crossref_primary_10_3390_app15020736
crossref_primary_10_1109_ACCESS_2025_3577797
crossref_primary_10_1016_j_isprsjprs_2024_06_006
crossref_primary_10_3390_drones9040300
crossref_primary_10_1007_s10846_022_01657_6
crossref_primary_10_1016_j_fmre_2023_02_003
crossref_primary_10_1109_TGRS_2024_3416326
crossref_primary_10_1109_TMM_2022_3140919
crossref_primary_10_3390_drones9050341
crossref_primary_10_1109_ACCESS_2023_3297190
crossref_primary_10_1007_s11831_025_10314_8
crossref_primary_10_1016_j_compag_2022_107434
crossref_primary_10_1016_j_measurement_2024_115476
crossref_primary_10_1007_s11227_024_06753_y
crossref_primary_10_1109_TII_2023_3290184
crossref_primary_10_1109_TMM_2022_3205407
crossref_primary_10_1002_cav_2190
crossref_primary_10_1016_j_neucom_2023_126558
crossref_primary_10_1109_ACCESS_2024_3356864
crossref_primary_10_1109_JSEN_2022_3226490
crossref_primary_10_1016_j_cja_2025_103558
crossref_primary_10_1016_j_neucom_2023_126321
crossref_primary_10_1016_j_eswa_2023_122205
crossref_primary_10_3390_s23062956
crossref_primary_10_1061_JCEMD4_COENG_15259
crossref_primary_10_1109_TGRS_2024_3438245
crossref_primary_10_1109_LSP_2022_3191549
crossref_primary_10_1007_s11042_024_20435_0
crossref_primary_10_1109_TMM_2023_3234822
crossref_primary_10_1016_j_compag_2023_107831
crossref_primary_10_1109_JSEN_2024_3361509
crossref_primary_10_3390_s23094546
crossref_primary_10_1016_j_compeleceng_2024_109392
crossref_primary_10_1177_00202940231187922
crossref_primary_10_1186_s12911_025_02877_0
crossref_primary_10_1109_ACCESS_2024_3432156
crossref_primary_10_3389_fpls_2024_1409194
crossref_primary_10_3390_drones7100623
crossref_primary_10_3389_fmars_2022_1071618
crossref_primary_10_1186_s10033_025_01204_y
crossref_primary_10_1049_cvi2_12106
crossref_primary_10_1007_s40747_023_01273_3
crossref_primary_10_3390_drones7060389
crossref_primary_10_1109_LRA_2023_3322089
crossref_primary_10_1016_j_jvcir_2025_104549
crossref_primary_10_1016_j_neucom_2024_128906
crossref_primary_10_3390_app12199597
crossref_primary_10_1016_j_displa_2024_102682
crossref_primary_10_1016_j_sigpro_2023_109367
crossref_primary_10_1088_1361_6501_ad5c8b
crossref_primary_10_1109_JSEN_2025_3571871
crossref_primary_10_3390_wevj16060325
crossref_primary_10_1109_ACCESS_2022_3196650
crossref_primary_10_3390_agriculture15181970
crossref_primary_10_3390_math13081333
crossref_primary_10_1016_j_compag_2024_109161
crossref_primary_10_1016_j_neunet_2023_09_047
crossref_primary_10_1109_TCSVT_2023_3249162
crossref_primary_10_1007_s11760_024_03547_w
crossref_primary_10_1016_j_knosys_2024_112930
crossref_primary_10_3390_app13095361
crossref_primary_10_1109_TGRS_2023_3260254
crossref_primary_10_3233_JIFS_223516
crossref_primary_10_1371_journal_pone_0302277
crossref_primary_10_1109_TMM_2023_3241548
crossref_primary_10_3390_s24196489
crossref_primary_10_3390_electronics12143133
crossref_primary_10_1016_j_dsp_2025_105230
crossref_primary_10_1016_j_ecoinf_2024_102556
crossref_primary_10_1109_JIOT_2022_3219627
crossref_primary_10_1109_TRO_2023_3273180
crossref_primary_10_1080_02640414_2025_2510774
crossref_primary_10_1109_JSEN_2025_3558588
crossref_primary_10_1155_2024_5548146
crossref_primary_10_1007_s00521_024_09773_0
crossref_primary_10_1016_j_aej_2024_11_065
crossref_primary_10_1016_j_knosys_2023_110442
crossref_primary_10_1038_s41598_024_69058_3
crossref_primary_10_1007_s40747_025_01918_5
crossref_primary_10_3390_info14040218
crossref_primary_10_1109_TRO_2024_3420799
crossref_primary_10_1109_TCSVT_2024_3404275
crossref_primary_10_3390_computation10030035
crossref_primary_10_1007_s11263_021_01512_5
crossref_primary_10_1007_s10586_024_05059_1
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_1016_j_imavis_2025_105543
crossref_primary_10_1109_ACCESS_2025_3596264
crossref_primary_10_2478_ttj_2023_0007
crossref_primary_10_3390_s24154773
crossref_primary_10_11648_j_sr_20251304_15
crossref_primary_10_3390_app12073220
crossref_primary_10_1007_s00530_025_01694_9
crossref_primary_10_3390_drones7110681
crossref_primary_10_1109_LSP_2024_3371331
crossref_primary_10_3390_electronics13153033
crossref_primary_10_3390_app13179528
crossref_primary_10_1016_j_neucom_2025_130182
crossref_primary_10_3390_technologies12120239
crossref_primary_10_1109_JIOT_2025_3539852
crossref_primary_10_1109_TVT_2023_3243358
crossref_primary_10_1016_j_sigpro_2025_109958
crossref_primary_10_3390_aerospace12030194
crossref_primary_10_1016_j_aquaeng_2025_102534
crossref_primary_10_1016_j_neunet_2025_107907
crossref_primary_10_1016_j_neunet_2024_106539
crossref_primary_10_3390_jimaging11050144
crossref_primary_10_3390_s23239510
crossref_primary_10_1109_TCSVT_2023_3275813
crossref_primary_10_1109_LRA_2022_3193465
crossref_primary_10_3390_drones9090612
crossref_primary_10_1007_s11042_023_17255_z
crossref_primary_10_1080_21642583_2024_2409119
crossref_primary_10_1007_s11263_023_01933_4
crossref_primary_10_1016_j_eswa_2023_120185
crossref_primary_10_1016_j_patcog_2024_110785
crossref_primary_10_1049_ipr2_12861
crossref_primary_10_3390_agronomy15051135
crossref_primary_10_1016_j_eswa_2025_128359
crossref_primary_10_1109_TMM_2023_3240881
crossref_primary_10_1109_TPAMI_2024_3461778
crossref_primary_10_1007_s10462_022_10358_3
crossref_primary_10_1109_ACCESS_2025_3567349
crossref_primary_10_1016_j_inffus_2024_102247
crossref_primary_10_1109_TPAMI_2024_3485644
crossref_primary_10_1038_s41598_025_91674_w
crossref_primary_10_1007_s10462_025_11212_y
crossref_primary_10_3390_s22155863
crossref_primary_10_1049_cvi2_70010
crossref_primary_10_1016_j_dsp_2023_103929
crossref_primary_10_1007_s11704_023_2418_0
crossref_primary_10_3390_app142311098
crossref_primary_10_3390_sym15061194
crossref_primary_10_1007_s11263_023_01922_7
crossref_primary_10_1007_s10489_024_05439_5
crossref_primary_10_1007_s44443_025_00190_4
crossref_primary_10_3390_app14166888
crossref_primary_10_3390_rs16091604
crossref_primary_10_1016_j_fmre_2024_06_015
crossref_primary_10_1177_09544054241245476
crossref_primary_10_1016_j_engappai_2022_105770
crossref_primary_10_1007_s11227_023_05478_8
crossref_primary_10_1038_s41598_023_31806_2
crossref_primary_10_1007_s00138_024_01531_5
crossref_primary_10_1016_j_animal_2025_101503
crossref_primary_10_20965_jrm_2025_p0466
crossref_primary_10_1145_3760525
crossref_primary_10_1007_s40747_022_00946_9
crossref_primary_10_1080_23311916_2022_2151553
crossref_primary_10_1016_j_actaastro_2025_02_027
crossref_primary_10_1007_s13748_022_00290_6
crossref_primary_10_1109_JSEN_2023_3265659
crossref_primary_10_1016_j_imavis_2025_105695
crossref_primary_10_1038_s41598_022_19697_1
crossref_primary_10_3390_s24061978
crossref_primary_10_1016_j_cviu_2022_103569
crossref_primary_10_1016_j_knosys_2024_111859
crossref_primary_10_1109_TCE_2025_3541839
crossref_primary_10_1016_j_neucom_2022_11_094
crossref_primary_10_1080_23311916_2025_2532808
crossref_primary_10_1109_TCSVT_2024_3423411
crossref_primary_10_1007_s11432_022_4097_y
crossref_primary_10_1007_s11554_025_01758_z
crossref_primary_10_1109_ACCESS_2024_3428438
crossref_primary_10_1109_JSAC_2023_3242708
crossref_primary_10_1109_TMM_2024_3401548
crossref_primary_10_1007_s00530_024_01407_8
crossref_primary_10_1016_j_knosys_2025_114072
crossref_primary_10_3390_rs14163853
crossref_primary_10_1109_TMM_2025_3557619
crossref_primary_10_1016_j_measurement_2022_112183
crossref_primary_10_1109_TAES_2023_3289164
crossref_primary_10_3390_rs14020320
crossref_primary_10_1016_j_ergon_2023_103440
crossref_primary_10_3390_mi13010072
crossref_primary_10_1109_TIM_2024_3522698
crossref_primary_10_3390_app13010440
crossref_primary_10_1016_j_biosystemseng_2024_12_011
crossref_primary_10_1109_LRA_2024_3511438
crossref_primary_10_1007_s40747_024_01687_7
crossref_primary_10_3390_f16071101
crossref_primary_10_1007_s00521_024_09799_4
crossref_primary_10_1016_j_csbj_2024_02_025
crossref_primary_10_1109_TGRS_2022_3152556
crossref_primary_10_1109_ACCESS_2025_3569732
crossref_primary_10_1109_ACCESS_2023_3287101
crossref_primary_10_1016_j_knosys_2024_111432
crossref_primary_10_1109_TMM_2021_3130414
crossref_primary_10_1007_s11760_025_04432_w
crossref_primary_10_1109_TMM_2022_3150169
crossref_primary_10_1016_j_knosys_2024_112760
crossref_primary_10_1007_s10489_024_05866_4
crossref_primary_10_3390_rs16193684
crossref_primary_10_1016_j_knosys_2024_112528
crossref_primary_10_1109_ACCESS_2025_3541177
crossref_primary_10_1145_3700443
crossref_primary_10_1007_s13042_024_02182_8
crossref_primary_10_1109_ACCESS_2025_3555321
crossref_primary_10_3390_electronics10202479
crossref_primary_10_3390_math10152606
crossref_primary_10_1016_j_neucom_2024_128997
crossref_primary_10_1109_TNNLS_2024_3384446
crossref_primary_10_1007_s00371_023_02983_y
crossref_primary_10_1109_TCSVT_2024_3392939
crossref_primary_10_1007_s11119_024_10132_1
crossref_primary_10_3390_ani15131835
crossref_primary_10_3389_fpls_2023_1175743
crossref_primary_10_1007_s10905_022_09802_7
crossref_primary_10_1007_s00138_024_01644_x
crossref_primary_10_1109_JSTARS_2023_3308042
crossref_primary_10_3390_wevj15080374
crossref_primary_10_1016_j_compag_2022_107018
crossref_primary_10_1016_j_knosys_2025_113909
crossref_primary_10_1109_TITS_2022_3229978
crossref_primary_10_1016_j_inffus_2024_102496
crossref_primary_10_1016_j_imavis_2022_104514
crossref_primary_10_1007_s11042_023_16910_9
crossref_primary_10_1007_s11760_024_03810_0
crossref_primary_10_3390_e25020380
crossref_primary_10_3390_app14135900
crossref_primary_10_1109_TVT_2023_3332132
crossref_primary_10_3390_app12157473
crossref_primary_10_1007_s11042_023_17397_0
crossref_primary_10_3390_app151810112
crossref_primary_10_3390_electronics11172765
crossref_primary_10_1007_s11042_023_16094_2
crossref_primary_10_3390_ani15162448
crossref_primary_10_1007_s00138_025_01675_y
crossref_primary_10_1109_ACCESS_2023_3247143
crossref_primary_10_1049_ipr2_12665
crossref_primary_10_1109_TMM_2023_3323852
crossref_primary_10_32604_cmc_2024_056824
crossref_primary_10_1038_s41598_023_27696_z
crossref_primary_10_1109_TITS_2024_3373370
crossref_primary_10_3390_electronics13030590
crossref_primary_10_1007_s10055_023_00937_2
crossref_primary_10_1109_ACCESS_2022_3160424
crossref_primary_10_1007_s40747_023_01009_3
crossref_primary_10_1109_JIOT_2021_3097590
crossref_primary_10_1016_j_scs_2022_104064
crossref_primary_10_1038_s41598_025_16389_4
crossref_primary_10_1109_TCSVT_2023_3339609
crossref_primary_10_1109_TMM_2025_3543018
crossref_primary_10_1016_j_neucom_2024_127328
crossref_primary_10_1093_comjnl_bxaf075
crossref_primary_10_1109_TGRS_2023_3278075
crossref_primary_10_1145_3733240
crossref_primary_10_1109_TPAMI_2024_3466915
crossref_primary_10_1109_TPAMI_2023_3320125
crossref_primary_10_1007_s11760_023_02511_4
crossref_primary_10_1117_1_JEI_32_5_053007
crossref_primary_10_1016_j_imavis_2023_104737
crossref_primary_10_1109_TIP_2024_3468901
crossref_primary_10_1109_TMC_2025_3529501
crossref_primary_10_1109_ACCESS_2024_3464575
crossref_primary_10_3390_s23187938
crossref_primary_10_1109_ACCESS_2022_3197157
crossref_primary_10_1145_3749105
crossref_primary_10_3390_s23084024
crossref_primary_10_1007_s11042_022_13780_5
crossref_primary_10_3390_electronics12234720
crossref_primary_10_3390_wevj14100272
crossref_primary_10_1016_j_displa_2025_103229
crossref_primary_10_1109_JSEN_2023_3293519
crossref_primary_10_1109_ACCESS_2024_3509447
crossref_primary_10_1007_s11042_025_20910_2
crossref_primary_10_1109_TII_2024_3488786
crossref_primary_10_1109_TCAD_2024_3443002
crossref_primary_10_1109_TPAMI_2021_3119563
crossref_primary_10_3390_s24113311
crossref_primary_10_7746_jkros_2023_18_4_463
crossref_primary_10_1109_ACCESS_2023_3333366
crossref_primary_10_1016_j_neucom_2024_128420
crossref_primary_10_1007_s10489_023_05081_7
crossref_primary_10_34133_plantphenomics_0174
crossref_primary_10_1109_TCE_2023_3319498
crossref_primary_10_1109_LRA_2021_3139369
crossref_primary_10_1109_TIP_2024_3364828
crossref_primary_10_3390_jimaging10100253
crossref_primary_10_1109_TMM_2022_3222614
crossref_primary_10_1007_s11263_024_02237_x
crossref_primary_10_1109_ACCESS_2025_3561769
crossref_primary_10_1109_LGRS_2022_3228527
crossref_primary_10_1016_j_jag_2024_103771
crossref_primary_10_1016_j_neunet_2023_06_029
crossref_primary_10_3390_electronics13142729
crossref_primary_10_3390_jmse11061141
crossref_primary_10_1080_24725579_2024_2398592
crossref_primary_10_3390_rs17122042
crossref_primary_10_1007_s11760_024_03715_y
crossref_primary_10_1016_j_knosys_2024_111369
crossref_primary_10_3390_s24041199
crossref_primary_10_1109_TPAMI_2024_3362401
crossref_primary_10_1109_JSTARS_2023_3289293
crossref_primary_10_3390_s24227332
crossref_primary_10_1016_j_eswa_2024_125653
crossref_primary_10_1109_JSEN_2024_3465019
crossref_primary_10_1007_s11760_024_03397_6
crossref_primary_10_1016_j_isprsjprs_2021_05_005
crossref_primary_10_1109_TMC_2025_3526573
crossref_primary_10_1016_j_measurement_2025_118009
crossref_primary_10_1016_j_oceaneng_2023_114198
crossref_primary_10_1007_s10499_024_01713_y
crossref_primary_10_1177_02783649241227448
crossref_primary_10_1007_s11263_025_02407_5
crossref_primary_10_1051_jnwpu_20224040944
crossref_primary_10_1515_eng_2024_0056
crossref_primary_10_1016_j_compeleceng_2022_108201
crossref_primary_10_1109_TCSVT_2024_3417810
crossref_primary_10_1109_ACCESS_2024_3523411
crossref_primary_10_3390_sym15122145
crossref_primary_10_1109_ACCESS_2024_3477513
crossref_primary_10_1109_TASE_2025_3529283
crossref_primary_10_7717_peerj_cs_2187
crossref_primary_10_1109_JSEN_2025_3583383
crossref_primary_10_1109_JIOT_2025_3585134
crossref_primary_10_1016_j_neucom_2025_131527
crossref_primary_10_3390_jmse13071256
crossref_primary_10_1016_j_eswa_2023_122194
crossref_primary_10_3390_s25113400
crossref_primary_10_1007_s00530_025_01722_8
crossref_primary_10_1007_s11042_023_15379_w
crossref_primary_10_1007_s11227_025_07466_6
crossref_primary_10_1109_TGRS_2025_3539462
crossref_primary_10_1016_j_jvcir_2023_103954
crossref_primary_10_3233_AIC_220277
crossref_primary_10_1007_s00371_023_02901_2
crossref_primary_10_1109_TPAMI_2022_3225382
crossref_primary_10_1016_j_procs_2022_11_179
crossref_primary_10_1145_3626825
crossref_primary_10_3390_s23073390
crossref_primary_10_1007_s11390_022_2204_8
crossref_primary_10_1016_j_neucom_2025_129563
crossref_primary_10_1109_LSP_2023_3329419
crossref_primary_10_1109_TGRS_2024_3457517
crossref_primary_10_1016_j_eswa_2024_123581
crossref_primary_10_1063_5_0222856
crossref_primary_10_1109_ACCESS_2023_3340914
crossref_primary_10_1109_ACCESS_2025_3549790
crossref_primary_10_1186_s10033_023_00962_x
crossref_primary_10_1007_s11042_022_13805_z
crossref_primary_10_1007_s11554_023_01301_y
crossref_primary_10_1016_j_biosystemseng_2025_02_001
crossref_primary_10_1016_j_neucom_2023_03_068
crossref_primary_10_1109_ACCESS_2024_3450370
crossref_primary_10_1007_s40747_022_00922_3
crossref_primary_10_1109_ACCESS_2024_3371860
crossref_primary_10_1109_ACCESS_2023_3274662
crossref_primary_10_1007_s11227_025_07664_2
crossref_primary_10_3390_ani14223299
crossref_primary_10_1109_ACCESS_2024_3371989
crossref_primary_10_1109_TPAMI_2025_3529926
crossref_primary_10_1109_TIP_2023_3263104
crossref_primary_10_1016_j_neucom_2024_129312
crossref_primary_10_1109_TASE_2023_3342791
crossref_primary_10_1109_LGRS_2025_3592711
crossref_primary_10_3390_rs14163862
crossref_primary_10_1007_s11042_025_20857_4
crossref_primary_10_1007_s10115_024_02237_w
crossref_primary_10_1016_j_compag_2023_108009
crossref_primary_10_1109_JSTARS_2022_3213438
crossref_primary_10_3390_electronics13152968
crossref_primary_10_1016_j_patcog_2025_112225
crossref_primary_10_1109_TGRS_2024_3420160
crossref_primary_10_1007_s00138_023_01398_y
crossref_primary_10_1007_s11801_024_4139_5
crossref_primary_10_1109_TGRS_2024_3355933
crossref_primary_10_1002_ece3_71996
crossref_primary_10_1007_s00521_023_09287_1
crossref_primary_10_1016_j_knosys_2024_112130
crossref_primary_10_3390_app132212228
crossref_primary_10_1007_s10489_022_03622_0
crossref_primary_10_1145_3587931
crossref_primary_10_1371_journal_pone_0317286
crossref_primary_10_1007_s11263_023_01943_2
crossref_primary_10_1109_TCSVT_2023_3238716
crossref_primary_10_1007_s11760_025_04655_x
crossref_primary_10_1109_TITS_2025_3565334
crossref_primary_10_3390_app15063052
crossref_primary_10_1109_TCSVT_2024_3481425
crossref_primary_10_1016_j_cviu_2024_103957
crossref_primary_10_1109_TPAMI_2022_3213073
crossref_primary_10_1002_rob_22279
crossref_primary_10_1007_s40747_024_01475_3
crossref_primary_10_1109_TMM_2025_3557710
crossref_primary_10_1007_s00521_025_11518_6
crossref_primary_10_1007_s10489_023_04617_1
crossref_primary_10_1016_j_measurement_2025_118567
crossref_primary_10_1109_TGRS_2024_3401573
crossref_primary_10_1007_s00371_025_03872_2
crossref_primary_10_1038_s41598_025_01898_z
crossref_primary_10_1016_j_asoc_2025_113845
crossref_primary_10_1016_j_compag_2023_108580
crossref_primary_10_3390_s23239499
crossref_primary_10_1007_s11263_023_01857_z
crossref_primary_10_1016_j_imavis_2024_104964
crossref_primary_10_1109_TIP_2022_3153170
crossref_primary_10_3390_jimaging8110308
crossref_primary_10_1016_j_displa_2022_102317
crossref_primary_10_1055_a_2577_2739
crossref_primary_10_1109_TITS_2024_3430811
crossref_primary_10_1109_JSTARS_2025_3563060
crossref_primary_10_3390_app12031061
crossref_primary_10_1109_TIP_2023_3298538
crossref_primary_10_1109_TGRS_2023_3278107
crossref_primary_10_1016_j_eswa_2025_126719
crossref_primary_10_1109_ACCESS_2025_3586901
crossref_primary_10_1007_s00371_025_03861_5
crossref_primary_10_3390_rs15010146
crossref_primary_10_3390_electronics14091896
crossref_primary_10_3390_electronics13010242
crossref_primary_10_3390_math12101467
crossref_primary_10_3390_s25165088
crossref_primary_10_1109_LRA_2023_3346807
crossref_primary_10_1109_ACCESS_2025_3526775
crossref_primary_10_1007_s00530_025_01679_8
crossref_primary_10_1109_TITS_2023_3317372
crossref_primary_10_1016_j_engappai_2024_108882
crossref_primary_10_1155_2021_2292128
crossref_primary_10_1007_s10586_024_04935_0
crossref_primary_10_1117_1_JEI_31_6_063025
crossref_primary_10_3389_fmars_2025_1524134
crossref_primary_10_1016_j_patcog_2024_111091
crossref_primary_10_1155_2023_3895703
crossref_primary_10_3390_app15010107
crossref_primary_10_1016_j_neucom_2025_130988
crossref_primary_10_1109_JSEN_2023_3339212
crossref_primary_10_3390_s24072094
Cites_doi 10.1109/CVPR.2008.4587581
10.1007/978-3-030-58621-8_7
10.1007/978-3-030-58548-8_28
10.1007/s11042-018-6467-6
10.1109/CVPR42600.2020.00628
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1109/CVPR.2019.00813
10.1109/CVPR.2019.00197
10.1109/CVPRW.2019.00190
10.1109/AVSS.2017.8078516
10.1109/CVPR.2017.106
10.1109/TPAMI.2011.21
10.1007/978-3-319-48881-3_3
10.1109/CVPR.2018.00255
10.1109/TPAMI.2017.2691769
10.1109/ICCV.2019.00667
10.1109/ICIP.2016.7533003
10.1109/WACV.2018.00057
10.1007/978-3-319-10602-1_48
10.1109/TPAMI.2013.103
10.1109/ICIP.2017.8296962
10.1007/978-3-030-01228-1_23
10.1145/3159171
10.1109/ICCV.2019.00975
10.1109/TPAMI.2020.2983686
10.1109/WACV.2019.00023
10.1002/nav.3800020109
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2017.360
10.1109/CVPR.2016.95
10.1109/ICCV.2017.41
10.1109/CVPR.2018.00644
10.1109/ICCV.2019.00103
10.1109/CVPR42600.2020.00634
10.1007/978-3-030-01270-0_17
10.1007/978-3-319-48881-3_2
10.1109/TPAMI.2021.3054719
10.1109/CVPR.2016.234
10.1109/CVPR.2010.5539960
10.1007/978-3-030-01264-9_45
10.1109/CVPR.2008.4587597
10.1109/CVPR.2017.357
10.1109/ICCV.2019.00365
10.1109/CVPR.2017.394
10.1007/978-3-030-58548-8_9
10.1109/ICIP.2018.8451174
10.1109/TPAMI.2017.2781233
10.1109/CVPR.2014.167
10.1109/CVPR.2014.159
10.1109/CVPR.2019.00094
10.1109/CVPRW.2009.5206631
10.1109/ICCV.2019.00409
10.1109/CVPR42600.2020.00543
10.1109/CVPRW.2019.00105
10.1109/CVPR.2017.579
10.1109/CVPR42600.2020.01053
10.1007/978-3-319-48881-3_7
10.1609/aaai.v33i01.33018803
10.1109/CVPR.2017.474
10.1109/CVPR42600.2020.01468
10.1109/CVPR.2008.4587584
10.1109/ICCV.2015.534
10.1007/978-3-642-33709-3_25
10.1109/ICCV.2017.330
10.1007/s11263-015-0816-y
10.1109/ICCV.2019.00627
10.1109/CVPR46437.2021.00023
10.1109/ICIP.2017.8296360
10.1109/ICCV.2015.347
10.1109/CVPR42600.2020.01044
10.1109/TIP.2020.2993073
10.1109/TPAMI.2019.2910529
10.1109/ICPR.2018.8545450
10.1155/2008/246309
10.1109/ICCV.2017.322
10.1109/CVPR.2017.101
10.1109/ICME.2018.8486597
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-021-01513-4
DatabaseName CrossRef
Science (Gale in Context)
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 3087
ExternalDocumentID A679328215
10_1007_s11263_021_01513_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c458t-4700d0819b343be76fad39d69d94feff00f04e09a047d9a417aa014d4ffea1e93
IEDL.DBID M0C
ISICitedReferencesCount 1039
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692902100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 00:49:49 EST 2025
Sat Nov 29 10:20:29 EST 2025
Wed Nov 26 09:43:56 EST 2025
Sat Nov 29 06:42:28 EST 2025
Tue Nov 18 21:05:09 EST 2025
Fri Feb 21 02:47:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords FairMOT
Multi-object tracking
One-shot
Anchor-free
Real-time inference
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-4700d0819b343be76fad39d69d94feff00f04e09a047d9a417aa014d4ffea1e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6732-7823
PQID 2582666459
PQPubID 1456341
PageCount 19
ParticipantIDs proquest_journals_2582666459
gale_infotracacademiconefile_A679328215
gale_incontextgauss_ISR_A679328215
crossref_citationtrail_10_1007_s11263_021_01513_4
crossref_primary_10_1007_s11263_021_01513_4
springer_journals_10_1007_s11263_021_01513_4
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Tang, S., Andriluka, M., Andres, B., & Schiele, B. (2017). Multiple people tracking by lifted multicut and person re-identification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3539–3548).
Zheng, Z., Zheng, L., & Yang, Y. (2017b). A discriminatively learned cnn embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications, 14(1), 1–20.
Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010). Visual object tracking using adaptive correlation filters. In CVPR (pp. 2544–2550). IEEE.
Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D. & Van Gool, L. (2021). Multi–Task learning for dense prediction tasks: A survey. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3054719.
Yang, Z., Liu, S., Hu, H., Wang, L., & Lin, S. (2019). Reppoints: Point set representation for object detection. In ICCV (pp. 9657–9666).
Han, S., Huang, P., Wang, H., Yu, E., Liu, D., Pan, X., & Zhao, J. (2020) Mat: Motion-aware multi-object tracking. arXiv preprint arXiv:2009.04794
Zhou, X., Wang, D., & Krähenbühl, P. (2019a). Objects as points. arXiv preprint arXiv:1904.07850.
Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In ICIP (pp. 3464–3468). IEEE.
Zhou, X., Zhuo, J., & Krahenbuhl, P. (2019b). Bottom-up object detection by grouping extreme and center points. In CVPR (pp. 850–859).
Peng, J., Wang, C., Wan, F., Wu, Y., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., & Fu, Y. (2020). Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In European conference on computer vision (pp. 145–161). Springer.
Guo, M., Haque, A., Huang, D. A., Yeung, S., & Fei-Fei, L. (2018). Dynamic task prioritization for multitask learning. In Proceedings of the European conference on computer vision (ECCV) (pp. 270–287).
Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In CVPR (pp. 1–8). IEEE.
Zamir, A. R., Dehghan, A., & Shah, M. (2012). Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs. In European conference on computer vision (pp. 343–356). Springer.
Sener, O., & Koltun, V. (2018). Multi-task learning as multi-objective optimization. In NIPS (pp. 527–538).
KalmanREA new approach to linear filtering and prediction problemsJournal of Fluids Engineering196082135453931993
MahmoudiNAhadiSMRahmatiMMulti-target tracking using cnn-based features: CnnmttMultimedia Tools and Applications20197867077709610.1007/s11042-018-6467-6
Shan, C., Wei, C., Deng, B., Huang, J., Hua, X. S., Cheng, X., & Liang, K. (2020). Fgagt: Flow-guided adaptive graph tracking. arXiv preprint arXiv:2010.09015.
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInternational Journal of Computer Vision20151153211252342248210.1007/s11263-015-0816-y
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In ICCV (pp. 6569–6578).
Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. In 2017 IEEE international conference on image processing (ICIP) (pp. 3645–3649). IEEE.
Brasó, G., & Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6247–6257).
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942.
Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., & Tian, Q. (2017a). Person re-identification in the wild. In CVPR (pp. 1367–1376).
Kokkinos, I. (2017). Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In CVPR (pp. 6129–6138).
Chen, L., Ai, H., Zhuang, Z., & Shang, C. (2018a). Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In 2018 IEEE international conference on multimedia and expo (ICME) (pp. 1–6). IEEE.
Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online multi-object tracking with instance-aware tracker and dynamic model refreshment. In 2019 IEEE winter conference on applications of computer vision (WACV) (pp. 161–170). IEEE.
Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., et al. (2020). Deep high–resolution representation learning for visual recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2020.2983686.
Valmadre, J., Bewley, A., Huang, J., Sun, C., Sminchisescu, C., & Schmid, C. (2021). Local metrics for multi-object tracking. arXiv preprint arXiv:2104.02631.
Yu, F., Wang, D., Shelhamer, E., & Darrel, l. T. (2018). Deep layer aggregation. In CVPR (pp. 2403–2412).
Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., & Sun, J. (2018). Crowdhuman: A benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123.
Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P. (2020). Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10428–10436
Wan, X., Wang, J., Kong, Z., Zhao, Q., & Deng, S. (2018). Multi-object tracking using online metric learning with long short-term memory. In 2018 25th IEEE international conference on image processing (ICIP) (pp. 788–792). IEEE.
Luo, H., Gu, Y., Liao, X., Lai, S., & Jiang, W. (2019a). Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops.
Bae, S. H., & Yoon, K. J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1218–1225).
Sanchez-Matilla, R., Poiesi, F., & Cavallaro, A. (2016). Online multi-target tracking with strong and weak detections. In ECCV (pp. 84–99). Springer.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Zhou, Z., Xing, J., Zhang, M., & Hu, W. (2018). Online multi-target tracking with tensor-based high-order graph matching. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 1809–1814). IEEE.
Bochinski, E., Eiselein, V., & Sikora, T. (2017). High-speed tracking-by-detection without using image information. In 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS) (pp. 1–6). IEEE.
BernardinKStiefelhagenREvaluating multiple object tracking performance: The clear mot metricsEURASIP Journal on Image and Video Processing2008200811010.1155/2008/246309
Chu, P., & Ling, H. (2019). Famnet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In ICCV (pp. 6172–6181).
Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In CVPR (pp. 7482–7491).
ZhangYShengHWuYWangSLyuWKeWXiongZLong-term tracking with deep tracklet associationIEEE Transactions on Image Processing2020296694670610.1109/TIP.2020.2993073
Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In ECCV (pp. 17–35). Springer.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
SunSAkhtarNSongHMianASShahMDeep affinity network for multiple object trackingIEEE Transactions on Pattern Analysis and Machine Intelligence201943104119
Zhou, X., Koltun, V., & Krähenbühl, P. (2020). Tracking objects as points. In European conference on computer vision (pp. 474–490). Springer.
Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2008). A mobile vision system for robust multi-person tracking. In CVPR (pp. 1–8). IEEE.
Feichtenhofer, C., Pinz, A., & Zisserman, A. (2017). Detect to track and track to detect. In Proceedings of the IEEE international conference on computer vision (pp. 3038–3046).
Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M. H. (2018). Online multi-object tracking with dual matching attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 366–382).
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In CVPR (pp. 2117–2125).
Choi, W. (2015). Near-online multi-target tracking with aggregated local flow descriptor. In Proceedings of the IEEE international conference on computer vision (pp. 3029–3037).
Liang, C., Zhang, Z., Lu, Y., Zhou, X., Li, B., Ye, X., & Zou, J. (2020). Rethinking the competition between detection and reid in multi-object tracking. arXiv preprint arXiv:2010.12138.
Luo, H., Xie, W., Wang, X., & Zeng, W. (2019b). Detect or track: Towards cost-effective video object detection/tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8803–8810.
Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
Liu, S., Johns, E., & Davison, A. J.(2019). End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1871–1880).
Zhang, S., Benenson, R., & Schiele, B. (2017). Citypersons: A diverse dataset for pedestrian detection. In CVPR (pp. 3213–3221).
Bergmann, P., Meinhardt, T., & Leal-Taixe, L. (2019). Tracking without bells and whistles. In ICCV (pp. 941–951).
Kang, K., Ouyang, W., Li, H.
1513_CR13
1513_CR14
1513_CR11
1513_CR99
1513_CR12
1513_CR17
1513_CR18
1513_CR15
RE Kalman (1513_CR36) 1960; 82
1513_CR16
1513_CR93
1513_CR94
1513_CR91
1513_CR97
1513_CR10
1513_CR98
1513_CR95
1513_CR96
1513_CR19
1513_CR88
HW Kuhn (1513_CR42) 1955; 2
1513_CR89
1513_CR82
1513_CR83
1513_CR80
1513_CR81
1513_CR86
1513_CR87
1513_CR84
1513_CR85
J Berclaz (1513_CR3) 2011; 33
1513_CR90
1513_CR35
K Bernardin (1513_CR5) 2008; 2008
1513_CR33
1513_CR34
1513_CR39
1513_CR37
1513_CR38
1513_CR31
R Ranjan (1513_CR60) 2017; 41
1513_CR30
1513_CR24
1513_CR25
1513_CR22
1513_CR23
1513_CR28
1513_CR29
1513_CR26
1513_CR27
1513_CR8
1513_CR20
1513_CR9
1513_CR21
1513_CR4
1513_CR6
1513_CR7
1513_CR1
1513_CR57
1513_CR58
1513_CR56
O Russakovsky (1513_CR64) 2015; 115
1513_CR59
1513_CR50
1513_CR54
1513_CR51
1513_CR52
Y Zhang (1513_CR92) 2020; 29
1513_CR46
1513_CR47
1513_CR44
1513_CR45
1513_CR48
JF Henriques (1513_CR32) 2014; 37
1513_CR49
A Milan (1513_CR55) 2013; 36
1513_CR43
1513_CR40
1513_CR41
SH Bae (1513_CR2) 2017; 40
1513_CR79
1513_CR77
1513_CR78
1513_CR70
1513_CR75
1513_CR76
1513_CR73
1513_CR74
1513_CR68
1513_CR69
1513_CR66
1513_CR67
1513_CR61
1513_CR65
1513_CR62
1513_CR63
N Mahmoudi (1513_CR53) 2019; 78
P Tang (1513_CR72) 2019; 42
S Sun (1513_CR71) 2019; 43
References_xml – reference: Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE.
– reference: Luo, H., Gu, Y., Liao, X., Lai, S., & Jiang, W. (2019a). Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops.
– reference: Kokkinos, I. (2017). Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In CVPR (pp. 6129–6138).
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
– reference: Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., & Leibe, B. (2019). Mots: Multi-object tracking and segmentation. In CVPR (pp. 7942–7951).
– reference: Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M. H. (2018). Online multi-object tracking with dual matching attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 366–382).
– reference: He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In ICCV (pp. 2961–2969).
– reference: Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P. (2020). Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10428–10436
– reference: Zheng, Z., Zheng, L., & Yang, Y. (2017b). A discriminatively learned cnn embedding for person reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications, 14(1), 1–20.
– reference: Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2008). A mobile vision system for robust multi-person tracking. In CVPR (pp. 1–8). IEEE.
– reference: Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., & Tian, Q. (2017a). Person re-identification in the wild. In CVPR (pp. 1367–1376).
– reference: Lu, Z., Rathod, V., Votel, R., & Huang, J. (2020). Retinatrack: Online single stage joint detection and tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14668–14678).
– reference: TangPWangCWangXLiuWZengWWangJObject detection in videos by high quality object linkingIEEE Transactions on Pattern Analysis and Machine Intelligence20194251272127810.1109/TPAMI.2019.2910529
– reference: RanjanRPatelVMChellappaRHyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognitionT-PAMI201741112113510.1109/TPAMI.2017.2781233
– reference: Han, W., Khorrami, P., Paine, T. L., Ramachandran, P., Babaeizadeh, M., Shi, H., Li, J., Yan, S., & Huang, T. S. (2016). Seq-nms for video object detection. arXiv preprint arXiv:1602.08465.
– reference: Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., & Sun, J. (2018). Crowdhuman: A benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123.
– reference: Liu, S., Johns, E., & Davison, A. J.(2019). End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1871–1880).
– reference: MahmoudiNAhadiSMRahmatiMMulti-target tracking using cnn-based features: CnnmttMultimedia Tools and Applications20197867077709610.1007/s11042-018-6467-6
– reference: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91–99).
– reference: Zhou, Z., Xing, J., Zhang, M., & Hu, W. (2018). Online multi-target tracking with tensor-based high-order graph matching. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 1809–1814). IEEE.
– reference: Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: HenriquesJFCaseiroRMartinsPBatistaJHigh-speed tracking with kernelized correlation filtersIEEE Transactions on Pattern Analysis and Machine Intelligence201437358359610.1109/TPAMI.2014.2345390
– reference: Bergmann, P., Meinhardt, T., & Leal-Taixe, L. (2019). Tracking without bells and whistles. In ICCV (pp. 941–951).
– reference: Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In CVPR (pp. 1–8). IEEE.
– reference: Bochinski, E., Eiselein, V., & Sikora, T. (2017). High-speed tracking-by-detection without using image information. In 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS) (pp. 1–6). IEEE.
– reference: Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In ECCV (pp. 17–35). Springer.
– reference: Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Centernet: Keypoint triplets for object detection. In ICCV (pp. 6569–6578).
– reference: Wan, X., Wang, J., Kong, Z., Zhao, Q., & Deng, S. (2018). Multi-object tracking using online metric learning with long short-term memory. In 2018 25th IEEE international conference on image processing (ICIP) (pp. 788–792). IEEE.
– reference: BerclazJFleuretFTuretkenEFuaPMultiple object tracking using k-shortest paths optimizationIEEE Transactions on Pattern Analysis and Machine Intelligence20113391806181910.1109/TPAMI.2011.21
– reference: Sadeghian, A., Alahi, A., & Savarese, S. (2017). Tracking the untrackable: Learning to track multiple cues with long-term dependencies. In Proceedings of the IEEE international conference on computer vision (pp. 300–311).
– reference: ZhangYShengHWuYWangSLyuWKeWXiongZLong-term tracking with deep tracklet associationIEEE Transactions on Image Processing2020296694670610.1109/TIP.2020.2993073
– reference: Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). Mot20: A benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003.
– reference: Hermans, A., Beyer, L., & Leibe, B. (2017). In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737.
– reference: Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
– reference: Henschel, R., Zou, Y., & Rosenhahn, B. (2019). Multiple people tracking using body and joint detections. In CVPRW.
– reference: SunSAkhtarNSongHMianASShahMDeep affinity network for multiple object trackingIEEE Transactions on Pattern Analysis and Machine Intelligence201943104119
– reference: Sanchez-Matilla, R., Poiesi, F., & Cavallaro, A. (2016). Online multi-target tracking with strong and weak detections. In ECCV (pp. 84–99). Springer.
– reference: Kang, K., Li, H., Xiao, T., Ouyang, W., Yan, J., Liu, X., & Wang, X. (2017). Object detection in videos with tubelet proposal networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 727–735).
– reference: Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017a). Feature pyramid networks for object detection. In CVPR (pp. 2117–2125).
– reference: Wang, Z., Zheng, L., Liu, Y., Li, Y., & Wang, S. (2020b). Towards real-time multi-object tracking. In Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16 (pp. 107–122). Springer.
– reference: Valmadre, J., Bewley, A., Huang, J., Sun, C., Sminchisescu, C., & Schmid, C. (2021). Local metrics for multi-object tracking. arXiv preprint arXiv:2104.02631.
– reference: Chen, L., Ai, H., Shang, C., Zhuang, Z., & Bai, B. (2017). Online multi-object tracking with convolutional neural networks. In 2017 IEEE international conference on image processing (ICIP) (pp. 645–649). IEEE.
– reference: Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014). Multiple target tracking based on undirected hierarchical relation hypergraph. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1282–1289).
– reference: Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942.
– reference: Dollár, P., Wojek, C., Schiele, B., & Perona, P. (2009). Pedestrian detection: A benchmark. In CVPR (pp. 304–311). IEEE.
– reference: Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010). Visual object tracking using adaptive correlation filters. In CVPR (pp. 2544–2550). IEEE.
– reference: Han, S., Huang, P., Wang, H., Yu, E., Liu, D., Pan, X., & Zhao, J. (2020) Mat: Motion-aware multi-object tracking. arXiv preprint arXiv:2009.04794
– reference: Yu, F., Wang, D., Shelhamer, E., & Darrel, l. T. (2018). Deep layer aggregation. In CVPR (pp. 2403–2412).
– reference: Yang, Z., Liu, S., Hu, H., Wang, L., & Lin, S. (2019). Reppoints: Point set representation for object detection. In ICCV (pp. 9657–9666).
– reference: Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep association metric. In 2017 IEEE international conference on image processing (ICIP) (pp. 3645–3649). IEEE.
– reference: Zamir, A. R., Dehghan, A., & Shah, M. (2012). Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs. In European conference on computer vision (pp. 343–356). Springer.
– reference: Guo, M., Haque, A., Huang, D. A., Yeung, S., & Fei-Fei, L. (2018). Dynamic task prioritization for multitask learning. In Proceedings of the European conference on computer vision (ECCV) (pp. 270–287).
– reference: Zhou, X., Wang, D., & Krähenbühl, P. (2019a). Objects as points. arXiv preprint arXiv:1904.07850.
– reference: Chu, P., & Ling, H. (2019). Famnet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In ICCV (pp. 6172–6181).
– reference: BernardinKStiefelhagenREvaluating multiple object tracking performance: The clear mot metricsEURASIP Journal on Image and Video Processing2008200811010.1155/2008/246309
– reference: Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to track: Online multi-object tracking by decision making. In ICCV (pp. 4705–4713).
– reference: Pang, B., Li, Y., Zhang, Y., Li, M., & Lu, C. (2020). Tubetk: Adopting tubes to track multi-object in a one-step training model. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6308–6318).
– reference: Law, H., & Deng, J. (2018). Cornernet: Detecting objects as paired keypoints. In ECCV (pp. 734–750).
– reference: Kang, K., Ouyang, W., Li, H., & Wang, X. (2016). Object detection from video tubelets with convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 817–825).
– reference: MilanARothSSchindlerKContinuous energy minimization for multitarget trackingIEEE Transactions on Pattern Analysis and Machine Intelligence2013361587210.1109/TPAMI.2013.103
– reference: Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., et al. (2020). Deep high–resolution representation learning for visual recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2020.2983686.
– reference: Bae, S. H., & Yoon, K. J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1218–1225).
– reference: Xiao, T., Li, S., Wang, B., Lin, L., & Wang, X. (2017). Joint detection and identification feature learning for person search. In CVPR (pp. 3415–3424).
– reference: Dong, Z., Li, G., Liao, Y., Wang, F., Ren, P., & Qian, C. (2020). Centripetalnet: Pursuing high-quality keypoint pairs for object detection. In CVPR (pp. 10519–10528).
– reference: BaeSHYoonKJConfidence-based data association and discriminative deep appearance learning for robust online multi-object trackingIEEE Transactions on Pattern Analysis and Machine Intelligence201740359561010.1109/TPAMI.2017.2691769
– reference: Peng, J., Wang, C., Wan, F., Wu, Y., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., & Fu, Y. (2020). Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In European conference on computer vision (pp. 145–161). Springer.
– reference: Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D. & Van Gool, L. (2021). Multi–Task learning for dense prediction tasks: A survey. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3054719.
– reference: Hornakova, A., Henschel, R., Rosenhahn, B., & Swoboda, P. (2020). Lifted disjoint paths with application in multiple object tracking. In International conference on machine learning, PMLR (pp. 4364–4375).
– reference: Feichtenhofer, C., Pinz, A., & Zisserman, A. (2017). Detect to track and track to detect. In Proceedings of the IEEE international conference on computer vision (pp. 3038–3046).
– reference: Pang, J., Qiu, L., Li, X., Chen, H., Li, Q., Darrell, T., & Yu, F. (2021). Quasi-dense similarity learning for multiple object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 164–173).
– reference: Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017b). Focal loss for dense object detection. In ICCV (pp. 2980–2988).
– reference: Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., & Yan, J. (2016). Poi: Multiple object tracking with high performance detection and appearance feature. In ECCV (pp. 36–42). Springer.
– reference: Zhou, X., Zhuo, J., & Krahenbuhl, P. (2019b). Bottom-up object detection by grouping extreme and center points. In CVPR (pp. 850–859).
– reference: Choi, W. (2015). Near-online multi-target tracking with aggregated local flow descriptor. In Proceedings of the IEEE international conference on computer vision (pp. 3029–3037).
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInternational Journal of Computer Vision20151153211252342248210.1007/s11263-015-0816-y
– reference: Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In ECCV (pp. 740–755). Springer.
– reference: Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T. S., & Zhang, L. (2020). Higherhrnet: Scale-aware representation learning for bottom-up human pose estimation. In CVPR.
– reference: Luo, H., Xie, W., Wang, X., & Zeng, W. (2019b). Detect or track: Towards cost-effective video object detection/tracking. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 8803–8810.
– reference: Zhang, S., Benenson, R., & Schiele, B. (2017). Citypersons: A diverse dataset for pedestrian detection. In CVPR (pp. 3213–3221).
– reference: KalmanREA new approach to linear filtering and prediction problemsJournal of Fluids Engineering196082135453931993
– reference: Chen, Z., Badrinarayanan, V., Lee, C. Y., & Rabinovich, A. (2018b). Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In ICML, PMLR (pp. 794–803).
– reference: Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. In ICIP (pp. 3464–3468). IEEE.
– reference: Sener, O., & Koltun, V. (2018). Multi-task learning as multi-objective optimization. In NIPS (pp. 527–538).
– reference: Chen, L., Ai, H., Zhuang, Z., & Shang, C. (2018a). Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In 2018 IEEE international conference on multimedia and expo (ICME) (pp. 1–6). IEEE.
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In CVPR (pp. 770–778).
– reference: Fang, K., Xiang, Y., Li, X., & Savarese, S. (2018). Recurrent autoregressive networks for online multi-object tracking. In WACV (pp. 466–475). IEEE.
– reference: Shan, C., Wei, C., Deng, B., Huang, J., Hua, X. S., Cheng, X., & Liang, K. (2020). Fgagt: Flow-guided adaptive graph tracking. arXiv preprint arXiv:2010.09015.
– reference: Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial–temporal relation networks for multi-object tracking. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3988–3998).
– reference: Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In CVPR (pp. 6154–6162).
– reference: Milan, A., Leal-Taixé, L., Reid, I., Roth, S., & Schindler, K. (2016) Mot16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831.
– reference: Chao, P., Kao, C. Y., Ruan, Y. S., Huang, C. H., & Lin, Y. L. (2019). Hardnet: A low memory traffic network. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3552–3561).
– reference: Liang, C., Zhang, Z., Lu, Y., Zhou, X., Li, B., Ye, X., & Zou, J. (2020). Rethinking the competition between detection and reid in multi-object tracking. arXiv preprint arXiv:2010.12138.
– reference: Yang, F., Choi, W., & Lin, Y. (2016). Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2129–2137).
– reference: Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In CVPR (pp. 7482–7491).
– reference: KuhnHWThe Hungarian method for the assignment problemNaval Research Logistics Quarterly195521–283977551010.1002/nav.3800020109
– reference: Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online multi-object tracking with instance-aware tracker and dynamic model refreshment. In 2019 IEEE winter conference on applications of computer vision (WACV) (pp. 161–170). IEEE.
– reference: Tang, S., Andriluka, M., Andres, B., & Schiele, B. (2017). Multiple people tracking by lifted multicut and person re-identification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3539–3548).
– reference: Brasó, G., & Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6247–6257).
– reference: Zhou, X., Koltun, V., & Krähenbühl, P. (2020). Tracking objects as points. In European conference on computer vision (pp. 474–490). Springer.
– ident: 1513_CR23
  doi: 10.1109/CVPR.2008.4587581
– ident: 1513_CR79
  doi: 10.1007/978-3-030-58621-8_7
– ident: 1513_CR95
  doi: 10.1007/978-3-030-58548-8_28
– volume: 78
  start-page: 7077
  issue: 6
  year: 2019
  ident: 1513_CR53
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6467-6
– ident: 1513_CR9
  doi: 10.1109/CVPR42600.2020.00628
– ident: 1513_CR31
  doi: 10.1109/CVPR.2016.90
– ident: 1513_CR47
  doi: 10.1109/ICCV.2017.324
– ident: 1513_CR76
  doi: 10.1109/CVPR.2019.00813
– ident: 1513_CR49
  doi: 10.1109/CVPR.2019.00197
– ident: 1513_CR68
– ident: 1513_CR51
  doi: 10.1109/CVPRW.2019.00190
– ident: 1513_CR45
– ident: 1513_CR7
  doi: 10.1109/AVSS.2017.8078516
– ident: 1513_CR46
  doi: 10.1109/CVPR.2017.106
– ident: 1513_CR74
– volume: 33
  start-page: 1806
  issue: 9
  year: 2011
  ident: 1513_CR3
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2011.21
– ident: 1513_CR87
  doi: 10.1007/978-3-319-48881-3_3
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 1513_CR36
  publication-title: Journal of Fluids Engineering
– ident: 1513_CR88
  doi: 10.1109/CVPR.2018.00255
– volume: 40
  start-page: 595
  issue: 3
  year: 2017
  ident: 1513_CR2
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2017.2691769
– ident: 1513_CR22
  doi: 10.1109/ICCV.2019.00667
– ident: 1513_CR6
  doi: 10.1109/ICIP.2016.7533003
– ident: 1513_CR24
  doi: 10.1109/WACV.2018.00057
– ident: 1513_CR48
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1513_CR40
– volume: 36
  start-page: 58
  issue: 1
  year: 2013
  ident: 1513_CR55
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.103
– ident: 1513_CR54
– ident: 1513_CR81
  doi: 10.1109/ICIP.2017.8296962
– ident: 1513_CR99
  doi: 10.1007/978-3-030-01228-1_23
– ident: 1513_CR94
  doi: 10.1145/3159171
– ident: 1513_CR86
  doi: 10.1109/ICCV.2019.00975
– ident: 1513_CR78
  doi: 10.1109/TPAMI.2020.2983686
– ident: 1513_CR17
  doi: 10.1109/WACV.2019.00023
– ident: 1513_CR28
– volume: 2
  start-page: 83
  issue: 1–2
  year: 1955
  ident: 1513_CR42
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800020109
– volume: 37
  start-page: 583
  issue: 3
  year: 2014
  ident: 1513_CR32
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2345390
– ident: 1513_CR83
  doi: 10.1109/CVPR.2017.360
– ident: 1513_CR34
– ident: 1513_CR38
  doi: 10.1109/CVPR.2016.95
– ident: 1513_CR65
  doi: 10.1109/ICCV.2017.41
– ident: 1513_CR10
  doi: 10.1109/CVPR.2018.00644
– ident: 1513_CR4
  doi: 10.1109/ICCV.2019.00103
– ident: 1513_CR56
  doi: 10.1109/CVPR42600.2020.00634
– ident: 1513_CR19
– ident: 1513_CR27
  doi: 10.1007/978-3-030-01270-0_17
– ident: 1513_CR63
  doi: 10.1007/978-3-319-48881-3_2
– ident: 1513_CR75
  doi: 10.1109/TPAMI.2021.3054719
– ident: 1513_CR67
– ident: 1513_CR85
  doi: 10.1109/CVPR.2016.234
– ident: 1513_CR8
  doi: 10.1109/CVPR.2010.5539960
– ident: 1513_CR62
– ident: 1513_CR39
– ident: 1513_CR43
  doi: 10.1007/978-3-030-01264-9_45
– ident: 1513_CR14
– ident: 1513_CR26
  doi: 10.1109/CVPR.2008.4587597
– ident: 1513_CR93
  doi: 10.1109/CVPR.2017.357
– ident: 1513_CR11
  doi: 10.1109/ICCV.2019.00365
– ident: 1513_CR73
  doi: 10.1109/CVPR.2017.394
– ident: 1513_CR58
  doi: 10.1007/978-3-030-58548-8_9
– ident: 1513_CR61
– ident: 1513_CR77
  doi: 10.1109/ICIP.2018.8451174
– volume: 41
  start-page: 121
  issue: 1
  year: 2017
  ident: 1513_CR60
  publication-title: T-PAMI
  doi: 10.1109/TPAMI.2017.2781233
– ident: 1513_CR80
  doi: 10.1109/CVPR.2014.167
– ident: 1513_CR1
  doi: 10.1109/CVPR.2014.159
– ident: 1513_CR97
  doi: 10.1109/CVPR.2019.00094
– ident: 1513_CR20
  doi: 10.1109/CVPRW.2009.5206631
– ident: 1513_CR70
– ident: 1513_CR84
  doi: 10.1109/ICCV.2019.00409
– ident: 1513_CR15
  doi: 10.1109/CVPR42600.2020.00543
– volume: 43
  start-page: 104
  year: 2019
  ident: 1513_CR71
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 1513_CR33
  doi: 10.1109/CVPRW.2019.00105
– ident: 1513_CR41
  doi: 10.1109/CVPR.2017.579
– ident: 1513_CR21
  doi: 10.1109/CVPR42600.2020.01053
– ident: 1513_CR66
  doi: 10.1007/978-3-319-48881-3_7
– ident: 1513_CR52
  doi: 10.1609/aaai.v33i01.33018803
– ident: 1513_CR69
– ident: 1513_CR44
– ident: 1513_CR91
  doi: 10.1109/CVPR.2017.474
– ident: 1513_CR50
  doi: 10.1109/CVPR42600.2020.01468
– ident: 1513_CR90
  doi: 10.1109/CVPR.2008.4587584
– ident: 1513_CR96
– ident: 1513_CR82
  doi: 10.1109/ICCV.2015.534
– ident: 1513_CR89
  doi: 10.1007/978-3-642-33709-3_25
– ident: 1513_CR25
  doi: 10.1109/ICCV.2017.330
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 1513_CR64
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– ident: 1513_CR18
  doi: 10.1109/ICCV.2019.00627
– ident: 1513_CR57
  doi: 10.1109/CVPR46437.2021.00023
– ident: 1513_CR12
  doi: 10.1109/ICIP.2017.8296360
– ident: 1513_CR16
  doi: 10.1109/ICCV.2015.347
– ident: 1513_CR59
  doi: 10.1109/CVPR42600.2020.01044
– volume: 29
  start-page: 6694
  year: 2020
  ident: 1513_CR92
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2993073
– volume: 42
  start-page: 1272
  issue: 5
  year: 2019
  ident: 1513_CR72
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2019.2910529
– ident: 1513_CR98
  doi: 10.1109/ICPR.2018.8545450
– ident: 1513_CR29
– volume: 2008
  start-page: 1
  year: 2008
  ident: 1513_CR5
  publication-title: EURASIP Journal on Image and Video Processing
  doi: 10.1155/2008/246309
– ident: 1513_CR30
  doi: 10.1109/ICCV.2017.322
– ident: 1513_CR37
  doi: 10.1109/CVPR.2017.101
– ident: 1513_CR13
  doi: 10.1109/ICME.2018.8486597
– ident: 1513_CR35
SSID ssj0002823
Score 2.752268
Snippet Multi-object tracking (MOT) is an important problem in computer vision which has a wide range of applications. Formulating MOT as multi-task learning of object...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3069
SubjectTerms Accuracy
Artificial Intelligence
Computer Imaging
Computer Science
Computer vision
Datasets
Human-computer interaction
Image Processing and Computer Vision
Machine vision
Multiple target tracking
Object recognition
Optimization
Pattern Recognition
Pattern Recognition and Graphics
Source code
Vision
SummonAdditionalLinks – databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dT9sw8DQYD7wA40MLsMmakPYAkezESWreEKPapEGnlq83y4ltVGlKUdPy-zm7Tis-hsQe41wSx3e-D98XwEGeFYm2CVqqKcvQQClNXCpFY6VTmhjK0Qrx1fV_FxcXndtb8SckhTVttHvrkvScepHsxhLvc3Tmb8bSmC_BRxR3HdewoT-4nvNfNCJmDeTRMMpywUKqzOvveCKOnjPlF95RL3S66_833Q1YC0omOZlRxSf4YOpNWA8KJwnbucGhtqdDO7YFN101HJ_3Lo9JryaoHBJ37dghGVnyw0x85FZNVK1J38RDHYKNPH7JsCbnIUCR9Ep3wkNQFlbuNH4brrpnl6c_49B8Ia541pnEvKBUO32hTHlamiK3iD6hc6EFt8ZaSi3lhgpFeaGF4qxAFDOuubVGMSPSHViuR7X5DMRooVNurOKKcUWrUlcs6xjLLVUFMzYC1uJAVqEyuWuQ8Vcuaiq7xZS4mNIvpuQRHM6fuZ_V5XgT-ptDrXQFL2oXUXOnpk0jfw368iRHDoUkw7IIvgcgO8LPVyokKOBPuBpZTyD3WxKRYcs3MsnQUstdbZ4IjlqSWNz-9-R23we-B6uJoyqfD7kPy5Px1HyBlephMmzGX_1WeASXQP-_
  priority: 102
  providerName: Springer Nature
Title FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking
URI https://link.springer.com/article/10.1007/s11263-021-01513-4
https://www.proquest.com/docview/2582666459
Volume 129
WOSCitedRecordID wos000692902100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMXylMslJWFkDhAhJ3YyYYLKqUrEOxD20JbLpYT22gllC2bLb-fGa_TVUH0wsWSEydx9I3HM-N5ADzPVZFan6KmmgmFCkrlksoYnhib8dRxiVpIyK7_uRiPB6en5TQa3NroVtnxxMCo7aImG_nrVKEgnFPqk7fnPxOqGkWnq7GExhbskGRDLn0jfnDJiVGdWJeSRxVJ5aWIQTPr0DmRhhNMUqaVyBJ5ZWP6kz3_dU4atp_h7v9O_A7cjoIn219Tyl244Zp7sBuFUBaXeIuXujoP3bX7cDI08-VocvyGTRqGAiOjPrFItvDsvVsFb66GmcaymUvmNjogBczZvGGj6LTIJhVZfRjujzVZ6B_Al-Hh8cGHJBZkSGqpBqtEFpxbkiGqTGaVK3KPkJY2L20pvfOec8-l46XhsrClkaJA2IW00ntnhCuzh7DdLBr3CJizpc2k80YaIQ2vK1sLNXBeem4K4XwPRIeGrmO2ciqa8UNv8iwTghoR1AFBLXvw8vKZ83WujmtHPyOQNSXBaMjL5ru5aFv98Wim93PkWkg8QvXgRRzkF_j52sSgBfwJypt1ZeReB7-ObKDVG-x78KojoM3tf0_u8fVvewK3UiLdEBO5B9ur5YV7CjfrX6t5u-zDVnFy1oedd4fj6Qx7n4qkHxYGtlP1DdvZ0dff7w0PhQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkulKdYKGAhEAewsBMn2SAhVFFWXe0LlUX0ZpzYRiuhbNlsQfwpfiMzidNVQfTWA8c4TmLHn-fheQE8SZMssj5CTTWWCSooheOFMYIbG4vICYVaSJNdf5xNp_2jo_z9FvzqYmHIrbKjiQ2htsuSzshfRgkKwimlPnlz_I1T1SiyrnYlNFpYjNzPH6iy1a-H-7i-T6No8G7-9oCHqgK8VEl_zVUmhCVGWMQqLlyWehxXbtPc5so774XwQjmRG6EymxslMxy7VFZ574x0lHwJSf4lFfcz2lejjJ9SflRf2tL1qJIlaS5DkE4bqiejxmJKynsiY67OMMI_2cFfdtmG3Q12_rcfdR2uBcGa7bU74QZsueom7AQhmwUSVmNTV8eia7sFnwZmsZrM5q_YrGIoEDO6JhbAlp7tu3XjrVYxU1l26PjCBgerBtNsUbFJcMpks4JOtRjy_5IsELfh44XM-A5sV8vK3QXmbG5j5bxRRiojysKWMuk7r7wwmXS-B7JbfV2GbOxUFOSr3uSRJsRoRIxuEKNVD56fPnPc5iI5t_djApWmJB8VeRF9MSd1rYcfDvVeilQZwSqTHjwLnfwSP1-aEJSBk6C8YGd67nZw04HM1XqDtR686AC7uf3vwd07_22P4MrBfDLW4-F0dB-uRrRtmvjPXdher07cA7hcfl8v6tXDZgMy-HzRQP4NbSFnng
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED9NAyFeGJ-iY4CFQDxANDuxkwYJoYlSUW1rqzHExItxYnuqhNLRdCD-Nf467hJn1UDsbQ88JnESO_n5Puy73wE8TVUWWx-jp5oIhQ5K4aLCGB4Zm_DYcYleSMOuv5eNx_2jo3y6Br-6XBgKq-xkYiOo7bykNfLtWKEhnBL1ybYPYRHTwfDNybeIKkjRTmtXTqOFyK77-QPdt_r1aID_-lkcD98dvn0fhQoDUSlVfxnJjHNLSrFIZFK4LPXYx9ymuc2ld95z7rl0PDdcZjY3UmQ4DiGt9N4Z4YiICcX_lQx9TAonnKrPZ1oAXZm2jD26ZyrNRUjYadP2RNzsnpIjr0QSyXNK8U_V8NcebaP6hhv_80e7CTeCwc122hlyC9ZcdRs2gvHNgmir8VRX36I7dwc-Dc1ssT85fMUmFUNDmdExqQY292zglk0UW8VMZdmBi2Y2BF41WGeziu2HYE02KWi1i6FdUNLOxF34eCkjvgfr1bxy94E5m9tEOm-kEdLwsrClUH3npecmE873QHRI0GVgaadiIV_1il-a0KMRPbpBj5Y9eHF2z0nLUXJh6ycEME3kHxUh4tic1rUefTjQOylKawSuUD14Hhr5Ob6-NCFZAwdBfGHnWm510NNB_NV6hbsevOzAu7r8785tXvy0x3AN8av3RuPdB3A9phnUpIVuwfpyceoewtXy-3JWLx41c5HBl8vG8W_mgHDC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FairMOT%3A+On+the+Fairness+of+Detection+and+Re-identification+in+Multiple+Object+Tracking&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhang%2C+Yifu&rft.au=Wang%2C+Chunyu&rft.au=Wang+Xinggang&rft.au=Zeng+Wenjun&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=129&rft.issue=11&rft.spage=3069&rft.epage=3087&rft_id=info:doi/10.1007%2Fs11263-021-01513-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon