Feature selection methods for big data bioinformatics: A survey from the search perspective

This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Methods (San Diego, Calif.) Ročník 111; s. 21 - 31
Hlavní autoři: Wang, Lipo, Wang, Yaoli, Chang, Qing
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.12.2016
Témata:
ISSN:1046-2023, 1095-9130
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1046-2023
1095-9130
DOI:10.1016/j.ymeth.2016.08.014