Feature selection methods for big data bioinformatics: A survey from the search perspective
This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search p...
Uložené v:
| Vydané v: | Methods (San Diego, Calif.) Ročník 111; s. 21 - 31 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.12.2016
|
| Predmet: | |
| ISSN: | 1046-2023, 1095-9130 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 1046-2023 1095-9130 |
| DOI: | 10.1016/j.ymeth.2016.08.014 |