Layered Reconstruction for Defocus and Motion Blur
Light field reconstruction algorithms can substantially decrease the noise in stochastically rendered images. Recent algorithms for defocus blur alone are both fast and accurate. However, motion blur is a considerably more complex type of camera effect, and as a consequence, current algorithms are e...
Gespeichert in:
| Veröffentlicht in: | Computer graphics forum Jg. 33; H. 4; S. 81 - 92 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.07.2014
|
| Schlagworte: | |
| ISSN: | 0167-7055, 1467-8659, 1467-8659 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Light field reconstruction algorithms can substantially decrease the noise in stochastically rendered images. Recent algorithms for defocus blur alone are both fast and accurate. However, motion blur is a considerably more complex type of camera effect, and as a consequence, current algorithms are either slow or too imprecise to use in high quality rendering. We extend previous work on real‐time light field reconstruction for defocus blur to handle the case of simultaneous defocus and motion blur. By carefully introducing a few approximations, we derive a very efficient sheared reconstruction filter, which produces high quality images even for a low number of input samples. Our algorithm is temporally robust, and is about two orders of magnitude faster than previous work, making it suitable for both real‐time rendering and as a post‐processing pass for offline rendering. |
|---|---|
| Bibliographie: | ark:/67375/WNG-N5TX7X33-R istex:CD96C1DA664D22F0BEF9B47782B3E61C8A2AC08C Supporting Information ArticleID:CGF12415 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0167-7055 1467-8659 1467-8659 |
| DOI: | 10.1111/cgf.12415 |