COMBO: An efficient Bayesian optimization library for materials science

[Display omitted] In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials discovery Ročník 4; s. 18 - 21
Hlavní autoři: Ueno, Tsuyoshi, Rhone, Trevor David, Hou, Zhufeng, Mizoguchi, Teruyasu, Tsuda, Koji
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2016
Témata:
ISSN:2352-9245, 2352-9245
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn), however, can accommodate only small training data. We designed an efficient protocol for Bayesian optimization that employs Thompson sampling, random feature maps, one-rank Cholesky update and automatic hyperparameter tuning, and implemented it as an open-source python library called COMBO (COMmon Bayesian Optimization library). Promising results using COMBO to determine the atomic structure of a crystalline interface are presented. COMBO is available at https://github.com/tsudalab/combo.
AbstractList [Display omitted] In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn), however, can accommodate only small training data. We designed an efficient protocol for Bayesian optimization that employs Thompson sampling, random feature maps, one-rank Cholesky update and automatic hyperparameter tuning, and implemented it as an open-source python library called COMBO (COMmon Bayesian Optimization library). Promising results using COMBO to determine the atomic structure of a crystalline interface are presented. COMBO is available at https://github.com/tsudalab/combo.
Author Ueno, Tsuyoshi
Rhone, Trevor David
Tsuda, Koji
Hou, Zhufeng
Mizoguchi, Teruyasu
Author_xml – sequence: 1
  givenname: Tsuyoshi
  surname: Ueno
  fullname: Ueno, Tsuyoshi
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5-CB02 Kashiwanoha, Kashiwa 277-8561, Japan
– sequence: 2
  givenname: Trevor David
  surname: Rhone
  fullname: Rhone, Trevor David
  organization: Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA
– sequence: 3
  givenname: Zhufeng
  surname: Hou
  fullname: Hou, Zhufeng
  organization: Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
– sequence: 4
  givenname: Teruyasu
  surname: Mizoguchi
  fullname: Mizoguchi, Teruyasu
  organization: Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo 153-8505, Japan
– sequence: 5
  givenname: Koji
  orcidid: 0000-0002-4288-1606
  surname: Tsuda
  fullname: Tsuda, Koji
  email: tsuda@k.u-tokyo.ac.jp
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5-CB02 Kashiwanoha, Kashiwa 277-8561, Japan
BookMark eNp9kE9LAzEQxYNUsNbePeYL7JrsJtu0t7ZoFSq96DnkzwRSurslCUL99GZtDyLoYZg3ML9h3rtFo67vAKF7SkpKaPOwL1tbVlmVhJWE0Cs0rmpeFfOK8dEPfYOmMe5J3hCcsHk1Rpv17nW1W-Blh8E5bzx0Ca_UCaJXHe6Pybf-UyXfd_jgdVDhhF0fcKsSBK8OEccBMXCHrl0eYXrpE_T-9Pi2fi62u83LerktDOMzWgjHNbe64c4ZSpWoajBU6LnQDWXECBDcGW4p1IxRcGbW0EaLmmo3y8VsPUHkfNeEPsYATh6Db_NbkhI5ZCH3srVyyEISJrPTjDS_EOPTt6UUlD_8By7OIGRDHx6CvJi1PoBJ0vb-b_gL3WZ5sA
CitedBy_id crossref_primary_10_1016_j_mtphys_2021_100445
crossref_primary_10_1039_D4DD00387J
crossref_primary_10_1103_PhysRevX_7_021024
crossref_primary_10_1063_5_0078660
crossref_primary_10_1063_5_0185362
crossref_primary_10_1016_j_mtphys_2020_100324
crossref_primary_10_1007_s11082_025_08228_7
crossref_primary_10_7566_JPSJ_86_123601
crossref_primary_10_1021_acsami_5c08915
crossref_primary_10_1177_1475472X20978395
crossref_primary_10_1557_mrc_2019_40
crossref_primary_10_1109_ACCESS_2025_3539209
crossref_primary_10_1093_bib_bbaf286
crossref_primary_10_1088_1361_648X_ad31c0
crossref_primary_10_1038_s41524_025_01678_3
crossref_primary_10_1038_s41524_023_01191_5
crossref_primary_10_1109_ACCESS_2020_2966228
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123332
crossref_primary_10_1039_D2RE00285J
crossref_primary_10_1111_jace_18897
crossref_primary_10_1016_j_actamat_2019_01_051
crossref_primary_10_1016_j_commatsci_2019_03_057
crossref_primary_10_1007_s10472_020_09712_4
crossref_primary_10_1016_j_matpr_2020_10_091
crossref_primary_10_1016_j_commatsci_2019_03_054
crossref_primary_10_1063_5_0206042
crossref_primary_10_2514_1_J063812
crossref_primary_10_3390_biom10030482
crossref_primary_10_1002_adfm_202108044
crossref_primary_10_1063_1_5055570
crossref_primary_10_1557_adv_2019_468
crossref_primary_10_1080_27660400_2023_2232297
crossref_primary_10_1016_j_commatsci_2022_111286
crossref_primary_10_1038_s41586_021_03213_y
crossref_primary_10_1002_advs_201801367
crossref_primary_10_1016_j_matdes_2018_10_014
crossref_primary_10_1016_j_solidstatesciences_2024_107466
crossref_primary_10_1007_s40192_019_00156_1
crossref_primary_10_1111_jace_17774
crossref_primary_10_7566_JPSJ_88_044601
crossref_primary_10_1016_j_jallcom_2023_170824
crossref_primary_10_1039_D5DD00258C
crossref_primary_10_1109_ACCESS_2021_3101812
crossref_primary_10_1039_D1ME00154J
crossref_primary_10_1088_1361_648X_ab6e96
crossref_primary_10_1002_psp4_13288
crossref_primary_10_1021_acsaelm_5c00884
crossref_primary_10_3389_fphys_2021_740306
crossref_primary_10_1080_27660400_2023_2256494
crossref_primary_10_1111_ijag_16570
crossref_primary_10_1038_s41598_020_72811_z
crossref_primary_10_1088_1367_2630_ab82b9
crossref_primary_10_1103_PhysRevApplied_23_034078
crossref_primary_10_1063_5_0201522
crossref_primary_10_1246_bcsj_20190041
crossref_primary_10_1016_j_carbon_2021_01_126
crossref_primary_10_1039_C8ME00012C
crossref_primary_10_1002_adts_202300019
crossref_primary_10_1002_anie_201909989
crossref_primary_10_1039_D5SC01903F
crossref_primary_10_1038_s41524_019_0175_2
crossref_primary_10_1039_D2RE00005A
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123193
crossref_primary_10_1016_j_nxmate_2025_100574
crossref_primary_10_1063_5_0068903
crossref_primary_10_1016_j_jcrysgro_2024_127927
crossref_primary_10_1109_TASC_2024_3523253
crossref_primary_10_1016_j_actamat_2019_07_048
crossref_primary_10_1063_5_0006124
crossref_primary_10_3390_en16010416
crossref_primary_10_1080_14686996_2017_1401424
crossref_primary_10_1007_s12247_019_09382_8
crossref_primary_10_1007_s10994_020_05935_y
crossref_primary_10_1063_5_0203033
crossref_primary_10_1039_D0RE00243G
crossref_primary_10_1007_s40192_020_00183_3
crossref_primary_10_35848_1882_0786_ad5fd9
crossref_primary_10_1007_s40843_019_1255_4
crossref_primary_10_1016_j_coche_2021_100728
crossref_primary_10_1063_5_0140332
crossref_primary_10_2751_jcac_18_124
crossref_primary_10_1016_j_matdes_2020_109210
crossref_primary_10_1016_j_est_2025_117132
crossref_primary_10_1039_D0SC01101K
crossref_primary_10_1103_PhysRevApplied_20_024044
crossref_primary_10_1002_ange_201909989
crossref_primary_10_1016_j_joule_2022_09_002
crossref_primary_10_1063_5_0149199
crossref_primary_10_1002_adpr_202300226
crossref_primary_10_1016_j_jmrt_2022_12_171
crossref_primary_10_1002_solr_201800198
crossref_primary_10_1016_j_jqsrt_2024_109195
crossref_primary_10_1088_2632_2153_ad169f
crossref_primary_10_1088_2515_7639_ab0c3d
crossref_primary_10_1088_2632_2153_ac61eb
crossref_primary_10_1016_j_jmmm_2025_173322
crossref_primary_10_1088_2515_7639_ab3c45
crossref_primary_10_1016_j_compstruct_2024_118597
crossref_primary_10_1063_5_0180818
crossref_primary_10_1007_s11837_018_2894_0
crossref_primary_10_4155_fmc_2016_0197
crossref_primary_10_1002_aenm_202403431
crossref_primary_10_1007_s40192_017_0098_z
crossref_primary_10_1016_j_jobe_2024_110295
crossref_primary_10_1109_JLT_2024_3400845
crossref_primary_10_1038_s41524_019_0153_8
crossref_primary_10_1016_j_matdes_2020_109290
crossref_primary_10_1007_s40192_024_00369_z
crossref_primary_10_1038_s41598_024_70530_3
crossref_primary_10_1080_14686996_2017_1344083
crossref_primary_10_7566_JPSJ_92_014801
crossref_primary_10_1039_D5CE00061K
crossref_primary_10_1080_27660400_2023_2210251
crossref_primary_10_3389_fmats_2019_00082
crossref_primary_10_1038_s41467_018_03821_9
crossref_primary_10_1016_j_apmate_2025_100331
crossref_primary_10_1039_D3NR03066K
crossref_primary_10_1088_1367_2630_aa57bf
crossref_primary_10_1371_journal_pone_0193785
crossref_primary_10_1039_D1ME00093D
crossref_primary_10_1039_D2NR07147A
crossref_primary_10_1103_PhysRevB_111_174203
crossref_primary_10_1016_j_commatsci_2021_110747
crossref_primary_10_1038_s41524_022_00806_7
crossref_primary_10_1002_smtd_202301763
crossref_primary_10_1103_PhysRevMaterials_9_043801
crossref_primary_10_1186_s13321_019_0354_7
crossref_primary_10_1016_j_actamat_2021_117597
crossref_primary_10_1016_j_actamat_2022_117751
crossref_primary_10_5802_crgeos_116
crossref_primary_10_1016_j_commatsci_2020_110064
crossref_primary_10_3390_math11143067
crossref_primary_10_1016_j_addma_2020_101641
crossref_primary_10_1103_PhysRevResearch_2_023187
crossref_primary_10_1016_j_mtphys_2020_100296
crossref_primary_10_1063_5_0007414
crossref_primary_10_1080_14686996_2020_1791676
crossref_primary_10_1038_s41598_025_11121_8
crossref_primary_10_1007_s40820_024_01634_8
crossref_primary_10_1063_5_0138747
crossref_primary_10_1039_D2ME00277A
crossref_primary_10_1038_s41524_024_01485_2
crossref_primary_10_1039_D3EE02027D
crossref_primary_10_1038_s41598_018_21936_3
crossref_primary_10_2477_jccj_2023_0009
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_1016_j_cpc_2019_01_022
crossref_primary_10_1038_s41578_022_00513_1
crossref_primary_10_1016_j_cageo_2020_104674
crossref_primary_10_1016_j_cpc_2022_108405
crossref_primary_10_1080_15567265_2019_1576816
crossref_primary_10_1063_5_0017042
crossref_primary_10_1021_acs_cgd_5c00703
crossref_primary_10_1088_1742_6596_2766_1_012219
crossref_primary_10_1080_27660400_2025_2485025
crossref_primary_10_1146_annurev_matsci_082019_105100
Cites_doi 10.1063/1.2210932
10.1023/A:1008306431147
10.1103/PhysRevB.89.054303
10.1109/5992.998641
10.1021/ci3004682
10.7567/JJAP.55.045502
10.1103/PhysRevLett.115.205901
10.1016/j.commatsci.2012.10.028
10.1016/j.drudis.2014.12.004
10.1038/srep19660
10.1090/S0025-5718-1974-0343558-6
10.1039/a606455h
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.md.2016.04.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-9245
EndPage 21
ExternalDocumentID 10_1016_j_md_2016_04_001
S2352924516300035
GroupedDBID --M
0R~
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
ROL
SPC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
CITATION
EFKBS
ID FETCH-LOGICAL-c4571-8f5b5db65ffc11a823ec18b98b6140c8e85fc5d1e3441efc7616b831bf71bf4d3
ISSN 2352-9245
IngestDate Thu Nov 13 04:35:00 EST 2025
Tue Nov 18 21:33:10 EST 2025
Fri Feb 23 02:28:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Global optimization
Bayesian optimization
Python library
Materials design
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4571-8f5b5db65ffc11a823ec18b98b6140c8e85fc5d1e3441efc7616b831bf71bf4d3
ORCID 0000-0002-4288-1606
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S2352924516300035?via%3Dihub
PageCount 4
ParticipantIDs crossref_primary_10_1016_j_md_2016_04_001
crossref_citationtrail_10_1016_j_md_2016_04_001
elsevier_sciencedirect_doi_10_1016_j_md_2016_04_001
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials discovery
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Seko, Maekawa, Tsuda, Tanaka (bib0020) 2014; 89
Jones, Schonlau, Welch (bib0030) 1998; 13
Chapelle, Li (bib0040) 2011
Gale (bib0075) 1997; 93
Golub, Van Loan (bib0080) 2012; vol. 3
Yang, Wilson, Smola, Song (bib0085) 2015
Kiyohara, Oda, Tsuda, Mizoguchi (bib0055) 2016; 55
Reker, Schneider (bib0005) 2015; 20
Seko, Togo, Hayashi, Tsuda, Chaput, Tanaka (bib0025) 2015; 115
Bahn, Jacobsen (bib0100) 2002; 4
Kingma, Ba (bib0090) 2014
Oganov, Glass (bib0010) 2006; 124
Gill, Golub, Murray, Saunders (bib0065) 1974; 28
Snoek, Larochelle, Adams (bib0035) 2012
Balachandran, Xue, Theiler, Hogden, Lookman (bib0050) 2016; 6
Ong, Richards, Jain, Hautier, Kocher, Cholia, Gunter, Chevrier, Persson, Ceder (bib0095) 2013; 68
Ahmadi, Vogt, Iyer, Bajorath, Fröhlich (bib0015) 2013; 53
Rasmussen, Williams (bib0045) 2006
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0060) 2011; 12
Rahimi, Recht (bib0070) 2007
Reker (10.1016/j.md.2016.04.001_bib0005) 2015; 20
Seko (10.1016/j.md.2016.04.001_bib0020) 2014; 89
Balachandran (10.1016/j.md.2016.04.001_bib0050) 2016; 6
Jones (10.1016/j.md.2016.04.001_bib0030) 1998; 13
Kiyohara (10.1016/j.md.2016.04.001_bib0055) 2016; 55
Chapelle (10.1016/j.md.2016.04.001_bib0040) 2011
Ong (10.1016/j.md.2016.04.001_bib0095) 2013; 68
Gill (10.1016/j.md.2016.04.001_bib0065) 1974; 28
Ahmadi (10.1016/j.md.2016.04.001_bib0015) 2013; 53
Gale (10.1016/j.md.2016.04.001_bib0075) 1997; 93
Pedregosa (10.1016/j.md.2016.04.001_bib0060) 2011; 12
Golub (10.1016/j.md.2016.04.001_bib0080) 2012; vol. 3
Rasmussen (10.1016/j.md.2016.04.001_bib0045) 2006
Bahn (10.1016/j.md.2016.04.001_bib0100) 2002; 4
Snoek (10.1016/j.md.2016.04.001_bib0035) 2012
Rahimi (10.1016/j.md.2016.04.001_bib0070) 2007
Oganov (10.1016/j.md.2016.04.001_bib0010) 2006; 124
Yang (10.1016/j.md.2016.04.001_bib0085) 2015
Kingma (10.1016/j.md.2016.04.001_bib0090) 2014
Seko (10.1016/j.md.2016.04.001_bib0025) 2015; 115
References_xml – volume: 124
  start-page: 244704
  year: 2006
  ident: bib0010
  article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications
  publication-title: J. Chem. Phys.
– year: 2014
  ident: bib0090
  article-title: Adam A Method for Stochastic Optimization
– volume: 6
  start-page: 19660
  year: 2016
  ident: bib0050
  article-title: Adaptive strategies for materials design using uncertainties
  publication-title: Sci. Rep.
– start-page: 1098
  year: 2015
  end-page: 1106
  ident: bib0085
  article-title: A la Carte-Learning Fast Kernels
  publication-title: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics
– volume: 93
  start-page: 629
  year: 1997
  end-page: 637
  ident: bib0075
  article-title: Gulp A computer program for the symmetry-adapted simulation of solids
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 89
  start-page: 054303
  year: 2014
  ident: bib0020
  article-title: Machine learning with systematic density-functional theory calculations: application to melting temperatures of single- and binary-component solids
  publication-title: Phys. Rev. B
– start-page: 1177
  year: 2007
  end-page: 1184
  ident: bib0070
  article-title: Random features for large-scale kernel machines
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 458
  year: 2015
  end-page: 465
  ident: bib0005
  article-title: Active-learning strategies in computer-assisted drug discovery
  publication-title: Drug Discov. Today
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0060
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 68
  start-page: 314
  year: 2013
  end-page: 319
  ident: bib0095
  article-title: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis
  publication-title: Comput. Mater. Sci.
– volume: 28
  start-page: 505
  year: 1974
  end-page: 535
  ident: bib0065
  article-title: Methods for modifying matrix factorizations
  publication-title: Math. Comput.
– volume: 115
  start-page: 205901
  year: 2015
  ident: bib0025
  article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 56
  year: 2002
  end-page: 66
  ident: bib0100
  article-title: An object-oriented scripting interface to a legacy electronic structure code
  publication-title: Comput. Sci. Eng.
– year: 2006
  ident: bib0045
  article-title: Gaussian processes for machine learning
– volume: vol. 3
  year: 2012
  ident: bib0080
  publication-title: Matrix Computations
– volume: 55
  start-page: 045502
  year: 2016
  ident: bib0055
  article-title: Acceleration of stable interface structure searching using a kriging approach
  publication-title: Jpn. J. Appl. Phys.
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: bib0035
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf. Process. Syst.
– volume: 53
  start-page: 553
  year: 2013
  end-page: 559
  ident: bib0015
  article-title: Predicting potent compounds via model-based global optimization
  publication-title: J. Chem. Inf. Model.
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0030
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
– start-page: 2249
  year: 2011
  end-page: 2257
  ident: bib0040
  article-title: An empirical evaluation of Thompson sampling
  publication-title: Advances in Neural Information Processing Systems
– year: 2014
  ident: 10.1016/j.md.2016.04.001_bib0090
– volume: 124
  start-page: 244704
  year: 2006
  ident: 10.1016/j.md.2016.04.001_bib0010
  article-title: Crystal structure prediction using ab initio evolutionary techniques: principles and applications
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2210932
– volume: 13
  start-page: 455
  year: 1998
  ident: 10.1016/j.md.2016.04.001_bib0030
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.md.2016.04.001_bib0060
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 89
  start-page: 054303
  year: 2014
  ident: 10.1016/j.md.2016.04.001_bib0020
  article-title: Machine learning with systematic density-functional theory calculations: application to melting temperatures of single- and binary-component solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.054303
– start-page: 2249
  year: 2011
  ident: 10.1016/j.md.2016.04.001_bib0040
  article-title: An empirical evaluation of Thompson sampling
– start-page: 1177
  year: 2007
  ident: 10.1016/j.md.2016.04.001_bib0070
  article-title: Random features for large-scale kernel machines
– volume: 4
  start-page: 56
  year: 2002
  ident: 10.1016/j.md.2016.04.001_bib0100
  article-title: An object-oriented scripting interface to a legacy electronic structure code
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/5992.998641
– volume: 53
  start-page: 553
  year: 2013
  ident: 10.1016/j.md.2016.04.001_bib0015
  article-title: Predicting potent compounds via model-based global optimization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci3004682
– volume: 55
  start-page: 045502
  year: 2016
  ident: 10.1016/j.md.2016.04.001_bib0055
  article-title: Acceleration of stable interface structure searching using a kriging approach
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.55.045502
– start-page: 1098
  year: 2015
  ident: 10.1016/j.md.2016.04.001_bib0085
  article-title: A la Carte-Learning Fast Kernels
– volume: 115
  start-page: 205901
  year: 2015
  ident: 10.1016/j.md.2016.04.001_bib0025
  article-title: Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.205901
– volume: 68
  start-page: 314
  year: 2013
  ident: 10.1016/j.md.2016.04.001_bib0095
  article-title: Python materials genomics (pymatgen): a robust, open-source python library for materials analysis
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
– volume: 20
  start-page: 458
  year: 2015
  ident: 10.1016/j.md.2016.04.001_bib0005
  article-title: Active-learning strategies in computer-assisted drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.12.004
– volume: vol. 3
  year: 2012
  ident: 10.1016/j.md.2016.04.001_bib0080
– volume: 6
  start-page: 19660
  year: 2016
  ident: 10.1016/j.md.2016.04.001_bib0050
  article-title: Adaptive strategies for materials design using uncertainties
  publication-title: Sci. Rep.
  doi: 10.1038/srep19660
– start-page: 2951
  year: 2012
  ident: 10.1016/j.md.2016.04.001_bib0035
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf. Process. Syst.
– volume: 28
  start-page: 505
  year: 1974
  ident: 10.1016/j.md.2016.04.001_bib0065
  article-title: Methods for modifying matrix factorizations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1974-0343558-6
– year: 2006
  ident: 10.1016/j.md.2016.04.001_bib0045
– volume: 93
  start-page: 629
  year: 1997
  ident: 10.1016/j.md.2016.04.001_bib0075
  article-title: Gulp A computer program for the symmetry-adapted simulation of solids
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/a606455h
SSID ssj0001850492
Score 2.5045185
Snippet [Display omitted] In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Bayesian optimization
Global optimization
Materials design
Python library
Title COMBO: An efficient Bayesian optimization library for materials science
URI https://dx.doi.org/10.1016/j.md.2016.04.001
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-9245
  dateEnd: 20180630
  omitProxy: false
  ssIdentifier: ssj0001850492
  issn: 2352-9245
  databaseCode: AIEXJ
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEM7BOkLTdMGHLoUhlpTEim6mxMkfQBJOjiAN4GkyDpBLAd2ZMRd-8d7fEhWAqdohi6CIZsUrftwPN59d4fQe850ksRZEQkwNqK0oCwSNlzIVE9QqmEYE67ZRHZywkej_o9O53edC7O4zMqS39z0r_6rqOEeCNumzj5A3M2kcAM-g9DhCmKH6z8J_uD0eP80-Pu0KxBhw_37YqldvuQUdMQkJF92gw_HcQ3BdPXL64ZdsW23Hjdf2jReS_tsXPFn2nXv7g7n1XI6H583IZzx1HtLhzO9gPlb7HnL1q1cWGRcGR32TpeY-Gv603ZnccP0rFoK35el9ksQtuJPefUVg2kXwenOx6z1mntB_6Yt_Rl0sQ7KdK2O9-6Gi48TW-iVMFepNjz4VjntO9tcQz6seW0X-aTI7Qx5L7XUvkdoM85oH1Tj5uDb4ej7ylXHKZyjYtemMKw_BLw9U_D2QtYbOC2jZbiNtsJpAw88Sp6hji6fo6etGpQv0BeHl894UOIGLbhGC26jBQe0YEALbtCCA1peorOjw-HB1yh014hUSjMScUMlLSSjxihCBI8TrQiXfS7BYusprjk1ihZEJ2Axa6MyRpjkCZEmI5bdmbxCGyUA6TXCRMpUKhELI2TKqZaFUDJRcLLPTMFSuoM-1a8kV6H0vO2AcpnfJ4sd9KEZceXLrvzlt0n9lvPwl705mANi7h315gFP2EVPVgh_izauZ5V-hx6rxfX5fLYX4PIHTN2Mlw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COMBO%3A+An+efficient+Bayesian+optimization+library+for+materials+science&rft.jtitle=Materials+discovery&rft.au=Ueno%2C+Tsuyoshi&rft.au=Rhone%2C+Trevor+David&rft.au=Hou%2C+Zhufeng&rft.au=Mizoguchi%2C+Teruyasu&rft.date=2016-06-01&rft.issn=2352-9245&rft.eissn=2352-9245&rft.volume=4&rft.spage=18&rft.epage=21&rft_id=info:doi/10.1016%2Fj.md.2016.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_md_2016_04_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9245&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9245&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9245&client=summon