COMBO: An efficient Bayesian optimization library for materials science
[Display omitted] In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn...
Gespeichert in:
| Veröffentlicht in: | Materials discovery Jg. 4; S. 18 - 21 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.06.2016
|
| Schlagworte: | |
| ISSN: | 2352-9245, 2352-9245 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | [Display omitted]
In many subfields of chemistry and physics, numerous attempts have been made to accelerate scientific discovery using data-driven experimental design algorithms. Among them, Bayesian optimization has been proven to be an effective tool. A standard implementation (e.g., scikit-learn), however, can accommodate only small training data. We designed an efficient protocol for Bayesian optimization that employs Thompson sampling, random feature maps, one-rank Cholesky update and automatic hyperparameter tuning, and implemented it as an open-source python library called COMBO (COMmon Bayesian Optimization library). Promising results using COMBO to determine the atomic structure of a crystalline interface are presented. COMBO is available at https://github.com/tsudalab/combo. |
|---|---|
| ISSN: | 2352-9245 2352-9245 |
| DOI: | 10.1016/j.md.2016.04.001 |