Detection of Abnormal Visual Events via Global Optical Flow Orientation Histogram

The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information forensics and security Ročník 9; číslo 6; s. 988 - 998
Hlavní autoři: Tian Wang, Snoussi, Hichem
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1556-6013, 1556-6021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to detect abnormal events in video streams, a challenging but important subject in video surveillance. We propose a novel algorithm to address this problem. The algorithm is based on an image descriptor and a nonlinear classification method. We introduce a histogram of optical flow orientation as a descriptor encoding the moving information of each video frame. The nonlinear one-class support vector machine classification algorithm, following a learning period characterizing the normal behavior of training frames, detects abnormal events in the current frame. Further, a fast version of the detection algorithm is designed by fusing the optical flow computation with a background subtraction step. We finally apply the method to detect abnormal events on several benchmark data sets, and show promising results.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2014.2315971