Amorphous and perovskite Li3xLa(2/3)−xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries

Thin films of amorphous and crystalline perovskite Li 3x La (2/3)−x TiO 3 (LLT) (x = 0.117) are prepared by means of aqueous chemical solution deposition onto rutile TiO 2 thin films as an anode, yielding an electrochemical half-cell. The Li-ion conductivity of the pin-hole free, amorphous LLT thin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of sol-gel science and technology Ročník 73; číslo 3; s. 536 - 543
Hlavní autoři: van den Ham, E. J., Peys, N., De Dobbelaere, C., D’Haen, J., Mattelaer, F., Detavernier, C., Notten, P. H. L., Hardy, A., Van Bael, M. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2015
Springer Nature B.V
Témata:
ISSN:0928-0707, 1573-4846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Thin films of amorphous and crystalline perovskite Li 3x La (2/3)−x TiO 3 (LLT) (x = 0.117) are prepared by means of aqueous chemical solution deposition onto rutile TiO 2 thin films as an anode, yielding an electrochemical half-cell. The Li-ion conductivity of the pin-hole free, amorphous LLT thin film (90 nm thick) is 3.8 × 10 −8  S cm −1 on Pt and 1.3 × 10 −8  S cm −1 on rutile TiO 2 , while measuring perpendicular to the thin film direction with impedance spectroscopy. Grazing angle attenuated total reflectance-Fourier transform infrared spectroscopy shows that all organic precursor molecules have been decomposed at 500 °C. In addition, in situ (heating) X-ray diffraction analysis shows that phase pure crystalline perovskite LLT (x = 0.117) is formed on top of the rutile TiO 2 anode at 700 °C. Furthermore, thickness control is possible by varying the precursor solution concentration and the number of deposition cycles. The current study presents a promising synthesis route to develop all-solid-state battery devices based on multi-metal oxide materials using aqueous precursor chemistry.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0928-0707
1573-4846
DOI:10.1007/s10971-014-3511-5